Lemma 105.2.3. In Situation 105.2.1 let $x_0 : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$ be a morphism, where $k$ is a finite type field over $S$. Then $\mathcal{F}_{\mathcal{X}, k, x_0}$ is a deformation category and $T\mathcal{F}_{\mathcal{X}, k, x_0}$ and $\text{Inf}(\mathcal{F}_{\mathcal{X}, k, x_0})$ are finite dimensional $k$-vector spaces.

Proof. Choose an affine open $\mathop{\mathrm{Spec}}(\Lambda ) \subset S$ such that $\mathop{\mathrm{Spec}}(k) \to S$ factors through it. By Artin's Axioms, Section 96.3 we obtain a predeformation category $\mathcal{F}_{\mathcal{X}, k, x_0}$ over the category $\mathcal{C}_\Lambda$. (As pointed out in locus citatus this category only depends on the morphism $\mathop{\mathrm{Spec}}(k) \to S$ and not on the choice of $\Lambda$.) By Artin's Axioms, Lemmas 96.6.1 and 96.5.2 $\mathcal{F}_{\mathcal{X}, k, x_0}$ is actually a deformation category. By Artin's Axioms, Lemma 96.8.1 we find that $T\mathcal{F}_{\mathcal{X}, k, x_0}$ and $\text{Inf}(\mathcal{F}_{\mathcal{X}, k, x_0})$ are finite dimensional $k$-vector spaces. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).