Lemma 107.3.2. Let $U \to X$ be a smooth morphism of locally Noetherian schemes. Let $T'$ is an irreducible component of $U$. Let $T$ be the irreducible component of $X$ obtained as the closure of the image of $T'$. Then $m_{T', U} = m_{T, X}$.
Proof. Write $\xi '$ for the generic point of $T'$, and $\xi $ for the generic point of $T$. Let $A = \mathcal{O}_{X, \xi }$ and $B = \mathcal{O}_{U, \xi '}$. We need to show that $\text{length}_ A A = \text{length}_ B B$. Since $A \to B$ is a flat local homomorphism of rings (since smooth morphisms are flat), we have
by Algebra, Lemma 10.52.13. Thus it suffices to show $\mathfrak m_ A B = \mathfrak m_ B$, or equivalently, that $B/\mathfrak m_ A B$ is reduced. Since $U \to X$ is smooth, so is its base change $U_{\xi } \to \mathop{\mathrm{Spec}}\kappa (\xi )$. As $U_{\xi }$ is a smooth scheme over a field, it is reduced, and thus so its local ring at any point (Varieties, Lemma 33.25.4). In particular,
is reduced, as required. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)