Lemma 106.3.1. Let $f : U \to \mathcal{X}$ be a smooth morphism from a scheme to a locally Noetherian algebraic stack. The closure of the image of any irreducible component of $|U|$ is an irreducible component of $|\mathcal{X}|$. If $U \to \mathcal{X}$ is surjective, then all irreducible components of $|\mathcal{X}|$ are obtained in this way.

Proof. The map $|U| \to |\mathcal{X}|$ is continuous and open by Properties of Stacks, Lemma 99.4.7. Let $T \subset |U|$ be an irreducible component. Since $U$ is locally Noetherian, we can find a nonempty affine open $W \subset U$ contained in $T$. Then $f(T) \subset |\mathcal{X}|$ is irreducible and contains the nonempty open subset $f(W)$. Thus the closure of $f(T)$ is irreducible and contains a nonempty open. It follows that this closure is an irreducible component.

Assume $U \to \mathcal{X}$ is surjective and let $Z \subset |\mathcal{X}|$ be an irreducible component. Choose a Noetherian open subset $V$ of $|\mathcal{X}|$ meeting $Z$. After removing the other irreducible components from $V$ we may assume that $V \subset Z$. Take an irreducible component of the nonempty open $f^{-1}(V) \subset |U|$ and let $T \subset |U|$ be its closure. This is an irreducible component of $|U|$ and the closure of $f(T)$ must agree with $Z$ by our choice of $T$. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).