Lemma 98.4.7. There exists a unique topology on the sets of points of algebraic stacks with the following properties:

1. for every morphism of algebraic stacks $\mathcal{X} \to \mathcal{Y}$ the map $|\mathcal{X}| \to |\mathcal{Y}|$ is continuous, and

2. for every morphism $U \to \mathcal{X}$ which is flat and locally of finite presentation with $U$ an algebraic space the map of topological spaces $|U| \to |\mathcal{X}|$ is continuous and open.

Proof. Choose a morphism $p : U \to \mathcal{X}$ which is surjective, flat, and locally of finite presentation with $U$ an algebraic space. Such exist by the definition of an algebraic stack, as a smooth morphism is flat and locally of finite presentation (see Morphisms of Spaces, Lemmas 65.37.5 and 65.37.7). We define a topology on $|\mathcal{X}|$ by the rule: $W \subset |\mathcal{X}|$ is open if and only if $|p|^{-1}(W)$ is open in $|U|$. To show that this is independent of the choice of $p$, let $p' : U' \to \mathcal{X}$ be another morphism which is surjective, flat, locally of finite presentation from an algebraic space to $\mathcal{X}$. Set $U'' = U \times _\mathcal {X} U'$ so that we have a $2$-commutative diagram

$\xymatrix{ U'' \ar[r] \ar[d] & U' \ar[d] \\ U \ar[r] & \mathcal{X} }$

As $U \to \mathcal{X}$ and $U' \to \mathcal{X}$ are surjective, flat, locally of finite presentation we see that $U'' \to U'$ and $U'' \to U$ are surjective, flat and locally of finite presentation, see Lemma 98.3.2. Hence the maps $|U''| \to |U'|$ and $|U''| \to |U|$ are continuous, open and surjective, see Morphisms of Spaces, Definition 65.5.2 and Lemma 65.30.6. This clearly implies that our definition is independent of the choice of $p : U \to \mathcal{X}$.

Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. By Algebraic Stacks, Lemma 92.15.1 we can find a $2$-commutative diagram

$\xymatrix{ U \ar[d]_ x \ar[r]_ a & V \ar[d]^ y \\ \mathcal{X} \ar[r]^ f & \mathcal{Y} }$

with surjective smooth vertical arrows. Consider the associated commutative diagram

$\xymatrix{ |U| \ar[d]_{|x|} \ar[r]_{|a|} & |V| \ar[d]^{|y|} \\ |\mathcal{X}| \ar[r]^{|f|} & |\mathcal{Y}| }$

of sets. If $W \subset |\mathcal{Y}|$ is open, then by the definition above this means exactly that $|y|^{-1}(W)$ is open in $|V|$. Since $|a|$ is continuous we conclude that $|a|^{-1}|y|^{-1}(W) = |x|^{-1}|f|^{-1}(W)$ is open in $|W|$ which means by definition that $|f|^{-1}(W)$ is open in $|\mathcal{X}|$. Thus $|f|$ is continuous.

Finally, we have to show that if $U$ is an algebraic space, and $U \to \mathcal{X}$ is flat and locally of finite presentation, then $|U| \to |\mathcal{X}|$ is open. Let $V \to \mathcal{X}$ be surjective, flat, and locally of finite presentation with $V$ an algebraic space. Consider the commutative diagram

$\xymatrix{ |U \times _\mathcal {X} V| \ar[r]_ e \ar[rd]_ f & |U| \times _{|\mathcal{X}|} |V| \ar[d]_ c \ar[r]_ d & |V| \ar[d]^ b \\ & |U| \ar[r]^ a & |\mathcal{X}| }$

Now the morphism $U \times _\mathcal {X} V \to U$ is surjective, i.e, $f : |U \times _\mathcal {X} V| \to |U|$ is surjective. The left top horizontal arrow is surjective, see Lemma 98.4.3. The morphism $U \times _\mathcal {X} V \to V$ is flat and locally of finite presentation, hence $d \circ e : |U \times _\mathcal {X} V| \to |V|$ is open, see Morphisms of Spaces, Lemma 65.30.6. Pick $W \subset |U|$ open. The properties above imply that $b^{-1}(a(W)) = (d \circ e)(f^{-1}(W))$ is open, which by construction means that $a(W)$ is open as desired. $\square$

## Comments (0)

There are also:

• 2 comment(s) on Section 98.4: Points of algebraic stacks

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04XL. Beware of the difference between the letter 'O' and the digit '0'.