Remark 98.4.6. The result of Lemma 98.4.5 can be generalized as follows. Let $\mathcal{X}$ be an algebraic stack. Let $U$ be an algebraic space and let $f : U \to \mathcal{X}$ be a surjective morphism (which makes sense by Section 98.3). Let $R = U \times _\mathcal {X} U$, let $(U, R, s, t, c)$ be the groupoid in algebraic spaces, and let $f_{can} : [U/R] \to \mathcal{X}$ be the canonical morphism as constructed in Algebraic Stacks, Lemma 92.16.1. Then the image of $|R| \to |U| \times |U|$ is an equivalence relation and $|\mathcal{X}| = |U|/|R|$. The proof of Lemma 98.4.5 works without change. (Of course in general $[U/R]$ is not an algebraic stack, and in general $f_{can}$ is not an isomorphism.)

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: