Lemma 99.4.5. Let $\mathcal{X}$ be an algebraic stack. Let $\mathcal{X} = [U/R]$ be a presentation of $\mathcal{X}$, see Algebraic Stacks, Definition 93.16.5. Then the image of $|R| \to |U| \times |U|$ is an equivalence relation and $|\mathcal{X}|$ is the quotient of $|U|$ by this equivalence relation.

Proof. The assumption means that we have a smooth groupoid $(U, R, s, t, c)$ in algebraic spaces, and an equivalence $f : [U/R] \to \mathcal{X}$. We may assume $\mathcal{X} = [U/R]$. The induced morphism $p : U \to \mathcal{X}$ is smooth and surjective, see Algebraic Stacks, Lemma 93.17.2. Hence $|U| \to |\mathcal{X}|$ is surjective by Lemma 99.4.4. Note that $R = U \times _\mathcal {X} U$, see Groupoids in Spaces, Lemma 77.22.2. Hence Lemma 99.4.3 implies the map

$|R| \longrightarrow |U| \times _{|\mathcal{X}|} |U|$

is surjective. Hence the image of $|R| \to |U| \times |U|$ is exactly the set of pairs $(u_1, u_2) \in |U| \times |U|$ such that $u_1$ and $u_2$ have the same image in $|\mathcal{X}|$. Combining these two statements we get the result of the lemma. $\square$

There are also:

• 2 comment(s) on Section 99.4: Points of algebraic stacks

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).