Lemma 100.4.3. Let
be a fibre product of algebraic stacks. Then the map of sets of points
is surjective.
Lemma 100.4.3. Let
be a fibre product of algebraic stacks. Then the map of sets of points
is surjective.
Proof. Namely, suppose given fields $K$, $L$ and morphisms $\mathop{\mathrm{Spec}}(K) \to \mathcal{X}$, $\mathop{\mathrm{Spec}}(L) \to \mathcal{Z}$, then the assumption that they agree as elements of $|\mathcal{Y}|$ means that there is a common extension $M/K$ and $M/L$ such that $\mathop{\mathrm{Spec}}(M) \to \mathop{\mathrm{Spec}}(K) \to \mathcal{X} \to \mathcal{Y}$ and $\mathop{\mathrm{Spec}}(M) \to \mathop{\mathrm{Spec}}(L) \to \mathcal{Z} \to \mathcal{Y}$ are $2$-isomorphic. And this is exactly the condition which says you get a morphism $\mathop{\mathrm{Spec}}(M) \to \mathcal{Z} \times _\mathcal {Y} \mathcal{X}$. $\square$
Comments (0)
There are also: