$\xymatrix{ \mathcal{Z} \times _\mathcal {Y} \mathcal{X} \ar[r] \ar[d] & \mathcal{X} \ar[d] \\ \mathcal{Z} \ar[r] & \mathcal{Y} }$

be a fibre product of algebraic stacks. Then the map of sets of points

$|\mathcal{Z} \times _\mathcal {Y} \mathcal{X}| \longrightarrow |\mathcal{Z}| \times _{|\mathcal{Y}|} |\mathcal{X}|$

is surjective.

Proof. Namely, suppose given fields $K$, $L$ and morphisms $\mathop{\mathrm{Spec}}(K) \to \mathcal{X}$, $\mathop{\mathrm{Spec}}(L) \to \mathcal{Z}$, then the assumption that they agree as elements of $|\mathcal{Y}|$ means that there is a common extension $M/K$ and $M/L$ such that $\mathop{\mathrm{Spec}}(M) \to \mathop{\mathrm{Spec}}(K) \to \mathcal{X} \to \mathcal{Y}$ and $\mathop{\mathrm{Spec}}(M) \to \mathop{\mathrm{Spec}}(L) \to \mathcal{Z} \to \mathcal{Y}$ are $2$-isomorphic. And this is exactly the condition which says you get a morphism $\mathop{\mathrm{Spec}}(M) \to \mathcal{Z} \times _\mathcal {Y} \mathcal{X}$. $\square$

There are also:

• 2 comment(s) on Section 100.4: Points of algebraic stacks

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).