Definition 105.5.7. If $f : \mathcal{T} \to \mathcal{X}$ is a locally of finite type morphism between locally Noetherian algebraic stacks, and if $t \in |\mathcal{T}|$ is a point with image $x \in |\mathcal{X}|$, then we define the *relative dimension* of $f$ at $t$, denoted $\dim _ t(\mathcal{T}_ x),$ as follows: choose a morphism $\mathop{\mathrm{Spec}}k \to \mathcal{X}$, with source the spectrum of a field, which represents $x$, and choose a point $t' \in |\mathcal{T} \times _{\mathcal{X}} \mathop{\mathrm{Spec}}k|$ mapping to $t$ under the projection to $|\mathcal{T}|$ (such a point $t'$ exists, by Properties of Stacks, Lemma 98.4.3; then

\[ \dim _ t(\mathcal{T}_ x) = \dim _{t'}(\mathcal{T} \times _{\mathcal{X}} \mathop{\mathrm{Spec}}k ). \]

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)