Lemma 107.5.9. Suppose given a Cartesian square of morphisms of locally Noetherian stacks
in which the vertical morphisms are locally of finite type. If $t' \in |\mathcal{T}'|$, with images $t$, $x'$, and $x$ in $|\mathcal{T}|$, $|\mathcal{X}'|$, and $|\mathcal{X}|$ respectively, then $\dim _{t'}(\mathcal{T}'_{x'}) = \dim _{t}(\mathcal{T}_ x).$
Comments (0)