Lemma 105.5.10. If $f: \mathcal{U} \to \mathcal{X}$ is a smooth morphism of locally Noetherian algebraic stacks, and if $u \in |\mathcal{U}|$ with image $x \in |\mathcal{X}|$, then

$\dim _ u (\mathcal{U}) = \dim _ x(\mathcal{X}) + \dim _{u} (\mathcal{U}_ x).$

Proof. Choose a smooth surjective morphism $V \to \mathcal{U}$ whose source is a scheme, and let $v\in |V|$ be a point mapping to $u$. Then the composite $V \to \mathcal{U} \to \mathcal{X}$ is also smooth, and by Lemma 105.5.4 we have $\dim _ x(\mathcal{X}) = \dim _ v(V) - \dim _ v(V_ x),$ while $\dim _ u(\mathcal{U}) = \dim _ v(V) - \dim _ v(V_ u).$ Thus

$\dim _ u(\mathcal{U}) - \dim _ x(\mathcal{X}) = \dim _ v (V_ x) - \dim _ v (V_ u).$

Choose a representative $\mathop{\mathrm{Spec}}k \to \mathcal{X}$ of $x$ and choose a point $v' \in | V \times _{\mathcal{X}} \mathop{\mathrm{Spec}}k|$ lying over $v$, with image $u'$ in $|\mathcal{U}\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k|$; then by definition $\dim _ u(\mathcal{U}_ x) = \dim _{u'}(\mathcal{U}\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k),$ and $\dim _ v(V_ x) = \dim _{v'}(V\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k).$

Now $V\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k \to \mathcal{U}\times _{\mathcal{X}}\mathop{\mathrm{Spec}}k$ is a smooth surjective morphism (being the base-change of such a morphism) whose source is an algebraic space (since $V$ and $\mathop{\mathrm{Spec}}k$ are schemes, and $\mathcal{X}$ is an algebraic stack). Thus, again by definition, we have

\begin{align*} \dim _{u'}(\mathcal{U}\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k) & = \dim _{v'}(V\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k) - \dim _{v'}(V \times _{\mathcal{X}} \mathop{\mathrm{Spec}}k)_{u'}) \\ & = \dim _ v(V_ x) - \dim _{v'}( (V\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k)_{u'}). \end{align*}

Now $V\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k \cong V\times _{\mathcal{U}} (\mathcal{U}\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k),$ and so Lemma 105.5.9 shows that $\dim _{v'}((V\times _{\mathcal{X}} \mathop{\mathrm{Spec}}k)_{u'}) = \dim _ v(V_ u).$ Putting everything together, we find that

$\dim _ u(\mathcal{U}) - \dim _ x(\mathcal{X}) = \dim _ u(\mathcal{U}_ x),$

as required. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DRP. Beware of the difference between the letter 'O' and the digit '0'.