Lemma 107.5.18. If $\mathcal{Z} \hookrightarrow \mathcal{X}$ is a closed immersion of locally Noetherian algebraic stacks, and if $z \in |\mathcal{Z}|$ has image $x \in |\mathcal{X}|$, then $\dim _ z (\mathcal{Z}) \leq \dim _ x(\mathcal{X})$.
Proof. Choose a smooth surjective morphism $U\to \mathcal{X}$ whose source is a scheme; the base-changed morphism $V = U\times _{\mathcal{X}} \mathcal{Z} \to \mathcal{Z}$ is then also smooth and surjective, and the projection $V \to U$ is a closed immersion. If $v \in |V|$ maps to $z \in |\mathcal{Z}|$, and if we let $u$ denote the image of $v$ in $|U|$, then clearly $\dim _ v(V) \leq \dim _ u(U)$, while $\dim _ v (V_ z) = \dim _ u(U_ x)$, by Lemma 107.5.9. Thus
as claimed. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7954 by R on
Comment #8190 by Stacks Project on