Processing math: 100%

The Stacks project

101.19 Automorphism groups

Let \mathcal{X} be an algebraic stack. Let x \in |\mathcal{X}| correspond to x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}. In this situation we often use the phrase “let G_ x/k be the automorphism group algebraic space of x”. This just means that

G_ x = \mathit{Isom}_\mathcal {X}(x, x) = \mathop{\mathrm{Spec}}(k) \times _\mathcal {X} \mathcal{I}_\mathcal {X}

is the group algebraic space of automorphism of x. This is a group algebraic space over \mathop{\mathrm{Spec}}(k). If k'/k is an extension of fields then the automorphism group algebraic space of the induced morphism x' : \mathop{\mathrm{Spec}}(k') \to \mathcal{X} is the base change of G_ x to \mathop{\mathrm{Spec}}(k').

Lemma 101.19.1. In the situation above G_ x is a scheme if one of the following holds

  1. \Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X} is quasi-separated

  2. \Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X} is locally separated,

  3. \mathcal{X} is quasi-DM,

  4. \mathcal{I}_\mathcal {X} \to \mathcal{X} is quasi-separated,

  5. \mathcal{I}_\mathcal {X} \to \mathcal{X} is locally separated, or

  6. \mathcal{I}_\mathcal {X} \to \mathcal{X} is locally quasi-finite.

Proof. Observe that (1) \Rightarrow (4), (2) \Rightarrow (5), and (3) \Rightarrow (6) by Lemma 101.6.1. In case (4) we see that G_ x is a quasi-separated algebraic space and in case (5) we see that G_ x is a locally separated algebraic space. In both cases G_ x is a decent algebraic space (Decent Spaces, Section 68.6 and Lemma 68.15.2). Then G_ x is separated by More on Groupoids in Spaces, Lemma 79.9.4 whereupon we conclude that G_ x is a scheme by More on Groupoids in Spaces, Proposition 79.10.3. In case (6) we see that G_ x \to \mathop{\mathrm{Spec}}(k) is locally quasi-finite and hence G_ x is a scheme by Spaces over Fields, Lemma 72.10.8. \square

Lemma 101.19.2. Let \mathcal{X} be an algebraic stack. Let x \in |\mathcal{X}| be a point. Let P be a property of algebraic spaces over fields which is invariant under ground field extensions; for example P(X/k) = X \to \mathop{\mathrm{Spec}}(k)\text{ is finite}. The following are equivalent

  1. for some morphism x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X} in the class of x the automorphism group algebraic space G_ x/k has P, and

  2. for any morphism x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X} in the class of x the automorphism group algebraic space G_ x/k has P.

Proof. Omitted. \square

Remark 101.19.3. Let P be a property of algebraic spaces over fields which is invariant under ground field extensions. Given an algebraic stack \mathcal{X} and x \in |\mathcal{X}|, we say the automorphism group of \mathcal{X} at x has P if the equivalent conditions of Lemma 101.19.2 are satisfied. For example, we say the automorphism group of \mathcal{X} at x is finite, if G_ x \to \mathop{\mathrm{Spec}}(k) is finite whenever x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X} is a representative of x. Similarly for smooth, proper, etc. (There is clearly an abuse of language going on here, but we believe it will not cause confusion or imprecision.)

Lemma 101.19.4. Let f : \mathcal{X} \to \mathcal{Y} be a morphism of algebraic stacks. Let x \in |\mathcal{X}| be a point. The following are equivalent

  1. for some morphism x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X} in the class of x setting y = f \circ x the map G_ x \to G_ y of automorphism group algebraic spaces is an isomorphism, and

  2. for any morphism x : \mathop{\mathrm{Spec}}(k) \to \mathcal{X} in the class of x setting y = f \circ x the map G_ x \to G_ y of automorphism group algebraic spaces is an isomorphism.

Proof. This comes down to the fact that being an isomorphism is fpqc local on the target, see Descent on Spaces, Lemma 74.11.15. Namely, suppose that k'/k is an extension of fields and denote x' : \mathop{\mathrm{Spec}}(k') \to \mathcal{X} the composition and set y' = f \circ x'. Then the morphism G_{x'} \to G_{y'} is the base change of G_ x \to G_ y by \mathop{\mathrm{Spec}}(k') \to \mathop{\mathrm{Spec}}(k). Hence G_ x \to G_ y is an isomorphism if and only if G_{x'} \to G_{y'} is an isomorphism. Thus we see that the property propagates through the equivalence class if it holds for one. \square

Remark 101.19.5. Let f : \mathcal{X} \to \mathcal{Y} be a morphism of algebraic stacks. Let x \in |\mathcal{X}| be a point. To indicate the equivalent conditions of Lemma 101.19.4 are satisfied for f and x in the literature the terminology f is stabilizer preserving at x or f is fixed-point reflecting at x is used. We prefer to say f induces an isomorphism between automorphism groups at x and f(x).


Comments (2)

Comment #4347 by on

Typo in the proof of Lemma 101.19.4 : In the second to last sentence it should say "Hence is an isomorphism"


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.