The Stacks project

Lemma 105.12.3. With assumption and notation as in Lemma 105.12.2. Then $f$ is a (uniform) categorical moduli space if and only if $\phi $ is a (uniform) categorical quotient. Similarly for moduli spaces in a full subcategory.

Proof. It is immediate from the $1$-to-$1$ correspondence established in Lemma 105.12.2 that $f$ is a categorical moduli space if and only if $\phi $ is a categorical quotient (Quotients of Groupoids, Definition 82.4.1). If $Y' \to Y$ is a morphism, then $U' = Y' \times _ Y U \to Y' \times _ Y \mathcal{X} = \mathcal{X}'$ is a surjective, flat, locally finitely presented morphism as a base change of $U \to \mathcal{X}$ (Criteria for Representability, Lemma 96.17.1). And $R' = Y' \times _ Y R$ is equal to $U' \times _{\mathcal{X}'} U'$ by transitivity of fibre products. Hence $\mathcal{X}' = [U'/R']$, see Algebraic Stacks, Remark 93.16.3. Thus the base change of our situation to $Y'$ is another situation as in the statement of the lemma. From this it immediately follows that $f$ is a uniform categorical moduli space if and only if $\phi $ is a uniform categorical quotient. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DUI. Beware of the difference between the letter 'O' and the digit '0'.