Lemma 105.12.4. Let $f : \mathcal{X} \to Y$ be a morphism from an algebraic stack to an algebraic space. If for every affine scheme $Y'$ and flat morphism $Y' \to Y$ the base change $f' : Y' \times _ Y \mathcal{X} \to Y'$ is a categorical moduli space, then $f$ is a uniform categorical moduli space.

**Proof.**
Choose an étale covering $\{ Y_ i \to Y\} $ where $Y_ i$ is an affine scheme. For each $i$ and $j$ choose a affine open covering $Y_ i \times _ Y Y_ j = \bigcup Y_{ijk}$. Set $\mathcal{X}_ i = Y_ i \times _ Y \mathcal{X}$ and $\mathcal{X}_{ijk} = Y_{ijk} \times _ Y \mathcal{X}$. Let $g : \mathcal{X} \to W$ be a morphism towards an algebraic space. Then we consider the diagram

The assumption that $\mathcal{X}_ i \to Y_ i$ is a categorical moduli space, produces a unique dotted arrow $h_ i : Y_ i \to W$. The assumption that $\mathcal{X}_{ijk} \to Y_{ijk}$ is a categorical moduli space, implies the restriction of $h_ i$ and $h_ j$ to $Y_{ijk}$ are equal. Hence $h_ i$ and $h_ j$ agree on $Y_ i \times _ Y Y_ j$. Since $Y = \coprod Y_ i / \coprod Y_ i \times _ Y Y_ j$ (by Spaces, Section 64.9) we conclude that there is a unique morphism $Y \to W$ through which $g$ factors. Thus $f$ is a categorical moduli space. The same argument applies after a flat base change, hence $f$ is a uniform categorical moduli space. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)