Lemma 106.12.4. Let f : \mathcal{X} \to Y be a morphism from an algebraic stack to an algebraic space. If for every affine scheme Y' and flat morphism Y' \to Y the base change f' : Y' \times _ Y \mathcal{X} \to Y' is a categorical moduli space, then f is a uniform categorical moduli space.
Proof. Choose an étale covering \{ Y_ i \to Y\} where Y_ i is an affine scheme. For each i and j choose a affine open covering Y_ i \times _ Y Y_ j = \bigcup Y_{ijk}. Set \mathcal{X}_ i = Y_ i \times _ Y \mathcal{X} and \mathcal{X}_{ijk} = Y_{ijk} \times _ Y \mathcal{X}. Let g : \mathcal{X} \to W be a morphism towards an algebraic space. Then we consider the diagram
The assumption that \mathcal{X}_ i \to Y_ i is a categorical moduli space, produces a unique dotted arrow h_ i : Y_ i \to W. The assumption that \mathcal{X}_{ijk} \to Y_{ijk} is a categorical moduli space, implies the restriction of h_ i and h_ j to Y_{ijk} are equal. Hence h_ i and h_ j agree on Y_ i \times _ Y Y_ j. Since Y = \coprod Y_ i / \coprod Y_ i \times _ Y Y_ j (by Spaces, Section 65.9) we conclude that there is a unique morphism Y \to W through which g factors. Thus f is a categorical moduli space. The same argument applies after a flat base change, hence f is a uniform categorical moduli space. \square
Comments (0)