The Stacks project

Lemma 59.67.1. Let $\ell $ be a prime number and $n$ an integer $> 0$. Let $S$ be a quasi-compact and quasi-separated scheme. Let $X = \mathop{\mathrm{lim}}\nolimits _{i \in I} X_ i$ be the limit of a directed system of $S$-schemes each $X_ i \to S$ being finite étale of constant degree relatively prime to $\ell $. The following are equivalent:

  1. there exists an $\ell $-power torsion sheaf $\mathcal{G}$ on $S$ such that $H_{\acute{e}tale}^ n(S, \mathcal{G}) \neq 0$ and

  2. there exists an $\ell $-power torsion sheaf $\mathcal{F}$ on $X$ such that $H_{\acute{e}tale}^ n(X, \mathcal{F}) \neq 0$.

In fact, given $\mathcal{G}$ we can take $\mathcal{F} = g^{-1}\mathcal{F}$ and given $\mathcal{F}$ we can take $\mathcal{G} = g_*\mathcal{F}$.

Proof. Let $g : X \to S$ and $g_ i : X_ i \to S$ denote the structure morphisms. Fix an $\ell $-power torsion sheaf $\mathcal{G}$ on $S$ with $H^ n_{\acute{e}tale}(S, \mathcal{G}) \not= 0$. The system given by $\mathcal{G}_ i = g_ i^{-1}\mathcal{G}$ satisify the conditions of Theorem 59.51.3 with colimit sheaf given by $g^{-1}\mathcal{G}$. This tells us that:

\[ \mathop{\mathrm{colim}}\nolimits _{i\in I} H^ n_{\acute{e}tale}(X_ i, g_ i^{-1}\mathcal{G}) = H^ n_{\acute{e}tale}(X, \mathcal{G}) \]

By virtue of the $g_ i$ being finite étale morphism of degree prime to $\ell $ we can apply “la méthode de la trace” and we find the maps

\[ H^ n_{\acute{e}tale}(S, \mathcal{G}) \to H^ n_{\acute{e}tale}(X_ i, g_ i^{-1}\mathcal{G}) \]

are all injective (and compatible with the transition maps). See Section 59.66. Thus, the colimit is non-zero, i.e., $H^ n(X,g^{-1}\mathcal{G}) \neq 0$, giving us the desired result with $\mathcal{F} = g^{-1}\mathcal{G}$.

Conversely, suppose given an $\ell $-power torsion sheaf $\mathcal{F}$ on $X$ with $H^ n_{\acute{e}tale}(X, \mathcal{F}) \not= 0$. We note that since the $g_ i$ are finite morphisms the higher direct images vanish (Proposition 59.55.2). Then, by applying Lemma 59.51.7 we may also conclude the same for $g$. The vanishing of the higher direct images tells us that $H^ n_{\acute{e}tale}(X, \mathcal{F}) = H^ n(S, g_*\mathcal{F}) \neq 0$ by Leray (Proposition 59.54.2) giving us what we want with $\mathcal{G} = g_*\mathcal{F}$. $\square$


Comments (2)

Comment #5360 by Laurent Moret-Bailly on

In addition to Ben's comment, the converse (constructing from ) is proved but not stated. Also, in the proof there are 3 instances of an exponent standing for .

Comment #5598 by on

Yes, I saw the problem you are pointing out when I fixed Ben's comment. The typos are fixed here. Thanks!

There are also:

  • 3 comment(s) on Section 59.67: Galois cohomology

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DV7. Beware of the difference between the letter 'O' and the digit '0'.