Lemma 51.9.1. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module. Let $\mathfrak p \in V(I)$ be a prime ideal. Assume $e = \text{depth}_{IA_\mathfrak p}(M_\mathfrak p) < \infty $. Then there exists a nonempty open $U \subset V(\mathfrak p)$ such that $\text{depth}_{IA_\mathfrak q}(M_\mathfrak q) \geq e$ for all $\mathfrak q \in U$.
Proof. By definition of depth we have $IM_\mathfrak p \not= M_\mathfrak p$ and there exists an $M_\mathfrak p$-regular sequence $f_1, \ldots , f_ e \in IA_\mathfrak p$. After replacing $A$ by a principal localization we may assume $f_1, \ldots , f_ e \in I$ form an $M$-regular sequence, see Algebra, Lemma 10.68.6. Consider the module $M' = M/IM$. Since $\mathfrak p \in \text{Supp}(M')$ and since the support of a finite module is closed, we find $V(\mathfrak p) \subset \text{Supp}(M')$. Thus for $\mathfrak q \in V(\mathfrak p)$ we get $IM_\mathfrak q \not= M_\mathfrak q$. Hence, using that localization is exact, we see that $\text{depth}_{IA_\mathfrak q}(M_\mathfrak q) \geq e$ for any $\mathfrak q \in V(I)$ by definition of depth. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)