Lemma 52.9.1. Let (A, \mathfrak m) be a Noetherian local ring. Let I \subset A be an ideal. Let M be a finite A-module and let \mathfrak p \subset A be a prime. Let s and d be integers. Assume
A has a dualizing complex,
\text{cd}(A, I) \leq d, and
\text{depth}_{A_\mathfrak p}(M_\mathfrak p) + \dim (A/\mathfrak p) > d + s.
Then there exists an f \in A \setminus \mathfrak p which annihilates H^ i(R\Gamma _\mathfrak m(M)^\wedge ) for i \leq s where {}^\wedge indicates I-adic completion.
Proof.
According to Local Cohomology, Lemma 51.9.4 the function
\mathfrak p' \longmapsto \text{depth}_{A_{\mathfrak p'}}(M_{\mathfrak p'}) + \dim (A/\mathfrak p')
is lower semi-continuous on \mathop{\mathrm{Spec}}(A). Thus the value of this function on \mathfrak p' \subset \mathfrak p is > s + d. Thus our lemma is a special case of Lemma 52.8.1 provided that \mathfrak p \not= \mathfrak m. If \mathfrak p = \mathfrak m, then we have H^ i_\mathfrak m(M) = 0 for i \leq s + d by the relationship between depth and local cohomology (Dualizing Complexes, Lemma 47.11.1). Thus the argument given in the proof of Lemma 52.8.1 shows that H^ i(R\Gamma _\mathfrak m(M)^\wedge ) = 0 for i \leq s in this (degenerate) case.
\square
Comments (0)