Lemma 52.9.2. Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module. Let $s$ and $d$ be integers. Assume

1. $A$ has a dualizing complex,

2. if $\mathfrak p \in V(I)$, then no condition,

3. if $\mathfrak p \not\in V(I)$ and $V(\mathfrak p) \cap V(I) = \{ \mathfrak m\}$, then $\dim (A/\mathfrak p) \leq d$,

4. if $\mathfrak p \not\in V(I)$ and $V(\mathfrak p) \cap V(I) \not= \{ \mathfrak m\}$, then

$\text{depth}_{A_\mathfrak p}(M_\mathfrak p) \geq s \quad \text{or}\quad \text{depth}_{A_\mathfrak p}(M_\mathfrak p) + \dim (A/\mathfrak p) > d + s$

Then there exists an ideal $J_0 \subset A$ with $V(J_0) \cap V(I) = \{ \mathfrak m\}$ such that for any $J \subset J_0$ with $V(J) \cap V(I) = \{ \mathfrak m\}$ the map

$R\Gamma _ J(M) \longrightarrow R\Gamma _{J_0}(M)$

induces an isomorphism in cohomology in degrees $\leq s$ and moreover these modules are annihilated by a power of $J_0I$.

Proof. This is a special case of Lemma 52.8.2. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).