Lemma 93.8.2. Example 93.8.1 satisfies the Rim-Schlessinger condition (RS). In particular, $\mathcal{D}\! \mathit{ef}_ P$ is a deformation category for any $k$-algebra $P$.
Proof. Let $A_1 \to A$ and $A_2 \to A$ be morphisms of $\mathcal{C}_\Lambda $. Assume $A_2 \to A$ is surjective. According to Formal Deformation Theory, Lemma 90.16.4 it suffices to show that the functor $\mathcal{F}(A_1 \times _ A A_2) \to \mathcal{F}(A_1) \times _{\mathcal{F}(A)} \mathcal{F}(A_2)$ is an equivalence of categories. This is a special case of More on Algebra, Lemma 15.7.7. $\square$
Comments (0)