Lemma 93.16.2. In Situation 93.9.9 if $U_{12} \to \mathop{\mathrm{Spec}}(k)$ is smooth, then the morphism
is smooth. If in addition $U_1$ is a local complete intersection over $k$, then
is smooth.
Lemma 93.16.2. In Situation 93.9.9 if $U_{12} \to \mathop{\mathrm{Spec}}(k)$ is smooth, then the morphism
is smooth. If in addition $U_1$ is a local complete intersection over $k$, then
is smooth.
Proof. The equality signs hold by Lemma 93.9.7. Let us think of $\mathcal{C}_\Lambda $ as a deformation category over $\mathcal{C}_\Lambda $ as in Formal Deformation Theory, Section 90.9. Then
see Formal Deformation Theory, Remarks 90.5.2 (14). Using Lemma 93.9.10 the first statement is that the functor
is smooth. This follows from Formal Deformation Theory, Lemma 90.20.2 as long as we can show that $T\mathcal{D}\! \mathit{ef}_{P_{12}} = (0)$. This vanishing follows from Lemma 93.8.4 as $P_{12}$ is smooth over $k$. For the second statement it suffices to show that $\mathcal{D}\! \mathit{ef}_{P_1} \to \mathcal{C}_\Lambda $ is smooth, see Formal Deformation Theory, Lemma 90.8.7. In other words, we have to show $\mathcal{D}\! \mathit{ef}_{P_1}$ is unobstructed, which is Lemma 93.16.1. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)