Lemma 72.11.7. Let $k$ be a field. Let $f : X \to Y$ be a morphism of algebraic spaces over $k$. Let $x \in |X|$ be a point with image $y \in |Y|$.
if $f$ is étale at $x$, then $X$ is geometrically reduced at $x$ $\Leftrightarrow $ $Y$ is geometrically reduced at $y$,
if $f$ is surjective étale, then $X$ is geometrically reduced $\Leftrightarrow $ $Y$ is geometrically reduced.
Comments (0)