The Stacks project

Lemma 93.10.3. In Example 93.9.1 let $f : X \to Y$ be a morphism of schemes over $k$. There is a canonical exact sequence of $k$-vector spaces

\[ \xymatrix{ 0 \ar[r] & \text{Inf}(\mathcal{D}\! \mathit{ef}_{X \to Y}) \ar[r] & \text{Inf}(\mathcal{D}\! \mathit{ef}_ X \times \mathcal{D}\! \mathit{ef}_ Y) \ar[r] & \text{Der}_ k(\mathcal{O}_ Y, f_*\mathcal{O}_ X) \ar[lld] \\ & T\mathcal{D}\! \mathit{ef}_{X \to Y} \ar[r] & T(\mathcal{D}\! \mathit{ef}_ X \times \mathcal{D}\! \mathit{ef}_ Y) \ar[r] & \text{Ext}^1_{\mathcal{O}_ X}(Lf^*\mathop{N\! L}\nolimits _{Y/k}, \mathcal{O}_ X) } \]

Proof. The obvious map of deformation categories $\mathcal{D}\! \mathit{ef}_{X \to Y} \to \mathcal{D}\! \mathit{ef}_ X \times \mathcal{D}\! \mathit{ef}_ Y$ gives two of the arrows in the exact sequence of the lemma. Recall that $\text{Inf}(\mathcal{D}\! \mathit{ef}_{X \to Y})$ is the set of automorphisms of the trivial deformation

\[ f' : X' = X \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k[\epsilon ]) \xrightarrow {f \times \text{id}} Y' = Y \times _{\mathop{\mathrm{Spec}}(k)} \mathop{\mathrm{Spec}}(k[\epsilon ]) \]

of $X \to Y$ to $k[\epsilon ]$ equal to the identity modulo $\epsilon $. This is clearly the same thing as pairs $(\alpha , \beta ) \in \text{Inf}(\mathcal{D}\! \mathit{ef}_ X \times \mathcal{D}\! \mathit{ef}_ Y)$ of infinitesimal automorphisms of $X$ and $Y$ compatible with $f'$, i.e., such that $f' \circ \alpha = \beta \circ f'$. By Deformation Theory, Lemma 91.7.1 for an arbitrary pair $(\alpha , \beta )$ the difference between the morphism $f' : X' \to Y'$ and the morphism $\beta ^{-1} \circ f' \circ \alpha : X' \to Y'$ defines an element in

\[ \text{Der}_ k(\mathcal{O}_ Y, f_*\mathcal{O}_ X) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ Y}(\Omega _{Y/k}, f_*\mathcal{O}_ X) \]

Equality by More on Morphisms, Lemma 37.13.3. This defines the last top horizontal arrow and shows exactness in the first two places. For the map

\[ \text{Der}_ k(\mathcal{O}_ Y, f_*\mathcal{O}_ X) \to T\mathcal{D}\! \mathit{ef}_{X \to Y} \]

we interpret elements of the source as morphisms $f_\epsilon : X' \to Y'$ over $\mathop{\mathrm{Spec}}(k[\epsilon ])$ equal to $f$ modulo $\epsilon $ using Deformation Theory, Lemma 91.7.1. We send $f_\epsilon $ to the isomorphism class of $(f_\epsilon : X' \to Y')$ in $T\mathcal{D}\! \mathit{ef}_{X \to Y}$. Note that $(f_\epsilon : X' \to Y')$ is isomorphic to the trivial deformation $(f' : X' \to Y')$ exactly when $f_\epsilon = \beta ^{-1} \circ f \circ \alpha $ for some pair $(\alpha , \beta )$ which implies exactness in the third spot. Clearly, if some first order deformation $(f_\epsilon : X_\epsilon \to Y_\epsilon )$ maps to zero in $T(\mathcal{D}\! \mathit{ef}_ X \times \mathcal{D}\! \mathit{ef}_ Y)$, then we can choose isomorphisms $X' \to X_\epsilon $ and $Y' \to Y_\epsilon $ and we conclude we are in the image of the south-west arrow. Therefore we have exactness at the fourth spot. Finally, given two first order deformations $X_\epsilon $, $Y_\epsilon $ of $X$, $Y$ there is an obstruction in

\[ ob(X_\epsilon , Y_\epsilon ) \in \text{Ext}^1_{\mathcal{O}_ X}(Lf^*\mathop{N\! L}\nolimits _{Y/k}, \mathcal{O}_ X) \]

which vanishes if and only if $f : X \to Y$ lifts to $X_\epsilon \to Y_\epsilon $, see Deformation Theory, Lemma 91.7.1. This finishes the proof. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 93.10: Morphisms of Schemes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0E3V. Beware of the difference between the letter 'O' and the digit '0'.