Processing math: 100%

The Stacks project

Lemma 109.4.3. Let X \to S be a family of curves. Then there exists an étale covering \{ S_ i \to S\} such that X_ i = X \times _ S S_ i is a scheme. We may even assume X_ i is H-projective over S_ i.

Proof. This is an immediate corollary of Lemma 109.4.2. Namely, unwinding the definitions, this lemma gives there is a surjective smooth morphism S' \to S such that X' = X \times _ S S' comes endowed with an invertible \mathcal{O}_{X'}-module \mathcal{L}' which is ample on X'/S'. Then we can refine the smooth covering \{ S' \to S\} by an étale covering \{ S_ i \to S\} , see More on Morphisms, Lemma 37.38.7. After replacing S_ i by a suitable open covering we may assume X_ i \to S_ i is H-projective, see Morphisms, Lemmas 29.43.6 and 29.43.4 (this is also discussed in detail in More on Morphisms, Section 37.50). \square


Comments (0)

There are also:

  • 4 comment(s) on Section 109.4: The stack of polarized curves

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.