Lemma 109.4.3. Let $X \to S$ be a family of curves. Then there exists an étale covering $\{ S_ i \to S\} $ such that $X_ i = X \times _ S S_ i$ is a scheme. We may even assume $X_ i$ is H-projective over $S_ i$.
Proof. This is an immediate corollary of Lemma 109.4.2. Namely, unwinding the definitions, this lemma gives there is a surjective smooth morphism $S' \to S$ such that $X' = X \times _ S S'$ comes endowed with an invertible $\mathcal{O}_{X'}$-module $\mathcal{L}'$ which is ample on $X'/S'$. Then we can refine the smooth covering $\{ S' \to S\} $ by an étale covering $\{ S_ i \to S\} $, see More on Morphisms, Lemma 37.38.7. After replacing $S_ i$ by a suitable open covering we may assume $X_ i \to S_ i$ is H-projective, see Morphisms, Lemmas 29.43.6 and 29.43.4 (this is also discussed in detail in More on Morphisms, Section 37.50). $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: