Lemma 93.17.1. Let $k$ be a field. Set $S = \mathop{\mathrm{Spec}}(k[[t]])$ and $S_ n = \mathop{\mathrm{Spec}}(k[t]/(t^ n))$. Let $Y \to S$ be a proper, flat morphism of schemes whose special fibre $X$ is Cohen-Macaulay and equidimensional of dimension $d$. Denote $X_ n = Y \times _ S S_ n$. If for some $n \geq 1$ the $d$th Fitting ideal of $\Omega _{X_ n/S_ n}$ contains $t^{n - 1}$, then the generic fibre of $Y \to S$ is smooth.
Proof. By More on Morphisms, Lemma 37.22.7 we see that $Y \to S$ is a Cohen-Macaulay morphism. By Morphisms, Lemma 29.29.4 we see that $Y \to S$ has relative dimension $d$. By Divisors, Lemma 31.10.3 the $d$th Fitting ideal $\mathcal{I} \subset \mathcal{O}_ Y$ of $\Omega _{Y/S}$ cuts out the singular locus of the morphism $Y \to S$. In other words, $V(\mathcal{I}) \subset Y$ is the closed subset of points where $Y \to S$ is not smooth. By Divisors, Lemma 31.10.1 formation of this Fitting ideal commutes with base change. By assumption we see that $t^{n - 1}$ is a section of $\mathcal{I} + t^ n\mathcal{O}_ Y$. Thus for every $x \in X = V(t) \subset Y$ we conclude that $t^{n - 1} \in \mathcal{I}_ x$ where $\mathcal{I}_ x$ is the stalk at $x$. This implies that $V(\mathcal{I}) \subset V(t)$ in an open neighbourhood of $X$ in $Y$. Since $Y \to S$ is proper, this implies $V(\mathcal{I}) \subset V(t)$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6020 by Will Chen on
Comment #6171 by Johan on