Lemma 47.25.6. Let $\varphi : R \to A$ be a finite type homomorphism of Noetherian rings. Assume $R$ local and let $\mathfrak m \subset A$ be a maximal ideal lying over the maximal ideal of $R$. If $\omega _ R^\bullet $ is a normalized dualizing complex for $R$, then $\varphi ^!(\omega _ R^\bullet )_\mathfrak m$ is a normalized dualizing complex for $A_\mathfrak m$.

**Proof.**
We already know that $\varphi ^!(\omega _ R^\bullet )$ is a dualizing complex for $A$, see Lemma 47.24.3. Choose a factorization $R \to P \to A$ with $P = R[x_1, \ldots , x_ n]$ as in the construction of $\varphi ^!$. If we can prove the lemma for $R \to P$ and the maximal ideal $\mathfrak m'$ of $P$ corresponding to $\mathfrak m$, then we obtain the result for $R \to A$ by applying Lemma 47.16.2 to $P_{\mathfrak m'} \to A_\mathfrak m$ or by applying Lemma 47.17.2 to $P \to A$. In the case $A = R[x_1, \ldots , x_ n]$ we see that $\dim (A_\mathfrak m) = \dim (R) + n$ for example by Algebra, Lemma 10.111.7 (combined with Algebra, Lemma 10.113.1 to compute the dimension of the fibre). The fact that $\omega _ R^\bullet $ is normalized means that $i = -\dim (R)$ is the smallest index such that $H^ i(\omega _ R^\bullet )$ is nonzero (follows from Lemmas 47.16.5 and 47.16.11). Then $\varphi ^!(\omega _ R^\bullet )_\mathfrak m = \omega _ R^\bullet \otimes _ R A_\mathfrak m[n]$ has its first nonzero cohomology module in degree $-\dim (R) - n$ and therefore is the normalized dualizing complex for $A_\mathfrak m$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)