Lemma 42.5.2. The tame symbol (42.5.0.1) satisfies (4), (5), (6), (7) and hence gives a map $\partial _ A : Q(A)^* \times Q(A)^* \to \kappa (\mathfrak m)^*$ satisfying (1), (2), (3).
Proof. Let us prove (4). Let $a_1, a_2, a_3 \in A$ be nonzerodivisors. Choose $A \subset B$ as in Lemma 42.4.4 for $a_1, a_2, a_3$. Then the equality
follows from the equality
in $B_ j$. Properties (5) and (6) are equally immediate.
Let us prove (7). Let $a_1, a_2, a_1 - a_2 \in A$ be nonzerodivisors and set $a_3 = a_1 - a_2$. Choose $A \subset B$ as in Lemma 42.4.4 for $a_1, a_2, a_3$. Then it suffices to show
This is clear if $e_{1, j} = e_{2, j} = e_{3, j}$. Say $e_{1, j} > e_{2, j}$. Then we see that $e_{3, j} = e_{2, j}$ because $a_3 = a_1 - a_2$ and we see that $u_{3, j}$ has the same residue class as $-u_{2, j}$. Hence the formula is true – the signs work out as well and this verification is the reason for the choice of signs in (42.5.0.1). The other cases are handled in exactly the same manner. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: