Lemma 42.5.1. The formula (42.5.0.1) determines a well defined element of $\kappa (\mathfrak m)^*$. In other words, the right hand side does not depend on the choice of the local factorizations or the choice of $B$.
Proof. Independence of choice of factorizations. Suppose we have a Noetherian $1$-dimensional local ring $B$, elements $a_1, a_2 \in B$, and nonzerodivisors $\pi , \theta $ such that we can write
with $e_ i, f_ i \geq 0$ integers and $u_ i, v_ i$ units in $B$. Observe that this implies
On the other hand, setting $m = \text{length}_ B(B/\pi B)$ and $k = \text{length}_ B(B/\theta B)$ we find $e_2 m = \text{length}_ B(B/a_2 B) = f_2 k$. Expanding $a_1^{e_2m} = a_1^{f_2 k}$ using the above we find
This proves the desired equality up to signs. To see the signs work out we have to show $me_1e_2$ is even if and only if $kf_1f_2$ is even. This follows as both $me_2 = kf_2$ and $me_1 = kf_1$ (same argument as above).
Independence of choice of $B$. Suppose given two extensions $A \subset B$ and $A \subset B'$ as in Lemma 42.4.4. Then
will be a third one. Thus we may assume we have $A \subset B \subset C$ and factorizations over the local rings of $B$ and we have to show that using the same factorizations over the local rings of $C$ gives the same element of $\kappa (\mathfrak m)$. By transitivity of norms (Fields, Lemma 9.20.5) this comes down to the following problem: if $B$ is a Noetherian local ring of dimension $1$ and $\pi \in B$ is a nonzerodivisor, then
Here we have used the following notation: (1) $\kappa $ is the residue field of $B$, (2) $\lambda $ is an element of $\kappa $, (3) $\mathfrak m_ k \subset C$ are the maximal ideals of $C$, (4) $\kappa _ k = \kappa (\mathfrak m_ k)$ is the residue field of $C_ k = C_{\mathfrak m_ k}$, (5) $m = \text{length}_ B(B/\pi B)$, and (6) $m_ k = \text{length}_{C_ k}(C_ k/\pi C_ k)$. The displayed equality holds because $\text{Norm}_{\kappa _ k/\kappa }(\lambda ) = \lambda ^{[\kappa _ k : \kappa ]}$ as $\lambda \in \kappa $ and because $m = \sum m_ k[\kappa _ k:\kappa ]$. First, we have $m = \text{length}_ B(B/xB) = \text{length}_ B(C/\pi C)$ by Lemma 42.2.5 and (42.2.2.1). Finally, we have $\text{length}_ B(C/\pi C) = \sum m_ k[\kappa _ k:\kappa ]$ by Algebra, Lemma 10.52.12. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: