Lemma 48.15.7. Let $(A, \mathfrak m)$ be a Noetherian local ring. Let $I \subset A$ be an ideal. Assume $A$ is excellent, normal, and $\dim V(I) \geq 1$. Then $\text{cd}(A, I) < \dim (A)$. In particular, if $\dim (A) = 2$, then $\mathop{\mathrm{Spec}}(A) \setminus V(I)$ is affine.

**Proof.**
By More on Algebra, Lemma 15.51.6 the completion $A^\wedge $ is normal and hence a domain. Thus the assumption of Proposition 48.15.6 holds and we conclude. The statement on affineness follows from Lemma 48.3.8.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)