Lemma 51.17.3. Let A be a ring. If f_1, \ldots , f_{r - 1}, f_ rg_ r are independent and if the A-module A/(f_1, \ldots , f_{r - 1}, f_ rg_ r) has finite length, then
See [Lech-inequalities] and [Lemma 2 page 300, MatCA].
\begin{align*} & \text{length}_ A(A/(f_1, \ldots , f_{r - 1}, f_ rg_ r)) \\ & = \text{length}_ A(A/(f_1, \ldots , f_{r - 1}, f_ r)) + \text{length}_ A(A/(f_1, \ldots , f_{r - 1}, g_ r)) \end{align*}
Proof. We claim there is an exact sequence
0 \to A/(f_1, \ldots , f_{r - 1}, g_ r) \xrightarrow {f_ r} A/(f_1, \ldots , f_{r - 1}, f_ rg_ r) \to A/(f_1, \ldots , f_{r - 1}, f_ r) \to 0
Namely, if a f_ r \in (f_1, \ldots , f_{r - 1}, f_ rg_ r), then \sum _{i < r} a_ i f_ i + (a + bg_ r)f_ r = 0 for some b, a_ i \in A. Hence \sum _{i < r} a_ i g_ r f_ i + (a + bg_ r)g_ rf_ r = 0 which implies a + bg_ r \in (f_1, \ldots , f_{r - 1}, f_ rg_ r) which means that a maps to zero in A/(f_1, \ldots , f_{r - 1}, g_ r). This proves the claim. To finish use additivity of lengths (Algebra, Lemma 10.52.3). \square
Comments (0)
There are also: