Lemma 51.17.3. Let $A$ be a ring. If $f_1, \ldots , f_{r - 1}, f_ rg_ r$ are independent and if the $A$-module $A/(f_1, \ldots , f_{r - 1}, f_ rg_ r)$ has finite length, then

See [Lech-inequalities] and [Lemma 2 page 300, MatCA].

**Proof.**
We claim there is an exact sequence

Namely, if $a f_ r \in (f_1, \ldots , f_{r - 1}, f_ rg_ r)$, then $\sum _{i < r} a_ i f_ i + (a + bg_ r)f_ r = 0$ for some $b, a_ i \in A$. Hence $\sum _{i < r} a_ i g_ r f_ i + (a + bg_ r)g_ rf_ r = 0$ which implies $a + bg_ r \in (f_1, \ldots , f_{r - 1}, f_ rg_ r)$ which means that $a$ maps to zero in $A/(f_1, \ldots , f_{r - 1}, g_ r)$. This proves the claim. To finish use additivity of lengths (Algebra, Lemma 10.52.3). $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: