The Stacks project

Lemma 57.29.2. In the situation of Lemma 57.29.1 assume that $H^ i(V, \mathcal{O}_ V) = 0$ for $i \geq \dim (A) - 1$. Then $V$ is affine.

Proof. Let $k = A/\mathfrak m$. Since $V \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(k) = \emptyset $, by cohomology and base change we have

\[ R\Gamma (V, \mathcal{O}_ V) \otimes _ A^\mathbf {L} k = 0 \]

See Derived Categories of Schemes, Lemma 36.22.5. Thus there is a spectral sequence (More on Algebra, Example 15.61.4)

\[ E_2^{p, q} = \text{Tor}_{-p}(k, H^ q(V, \mathcal{O}_ V)),\quad d_2^{p, q} : E_2^{p, q} \to E_2^{p + 2, q - 1} \]

and $d_ r^{p, q} : E_ r^{p, q} \to E_ r^{p + r, q - r + 1}$ converging to zero. By Lemma 57.29.1, Dualizing Complexes, Lemma 47.21.9, and our assumption $H^ i(V, \mathcal{O}_ V) = 0$ for $i \geq \dim (A) - 1$ we conclude that there is no nonzero differential entering or leaving the $(p, q) = (0, 0)$ spot. Thus $H^0(V, \mathcal{O}_ V) \otimes _ A k = 0$. This means that if $\mathfrak m = (x_1, \ldots , x_ d)$ then we have an open covering $V = \bigcup V \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A_{x_ i})$ by affine open subschemes $V \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A_{x_ i})$ (because $V$ is affine over the punctured spectrum of $A$) such that $x_1, \ldots , x_ d$ generate the unit ideal in $\Gamma (V, \mathcal{O}_ V)$. This implies $V$ is affine by Properties, Lemma 28.27.3. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0ECC. Beware of the difference between the letter 'O' and the digit '0'.