Lemma 70.18.5. In the situation of Definition 70.18.3 the intersection number $(\mathcal{L}_1 \cdots \mathcal{L}_ d \cdot Z)$ is additive: if $\mathcal{L}_ i = \mathcal{L}_ i' \otimes \mathcal{L}_ i''$, then we have

\[ (\mathcal{L}_1 \cdots \mathcal{L}_ i \cdots \mathcal{L}_ d \cdot Z) = (\mathcal{L}_1 \cdots \mathcal{L}_ i' \cdots \mathcal{L}_ d \cdot Z) + (\mathcal{L}_1 \cdots \mathcal{L}_ i'' \cdots \mathcal{L}_ d \cdot Z) \]

**Proof.**
This is true because by Lemma 70.18.1 the function

\[ (n_1, \ldots , n_{i - 1}, n_ i', n_ i'', n_{i + 1}, \ldots , n_ d) \mapsto \chi (Z, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes (\mathcal{L}_ i')^{\otimes n_ i'} \otimes (\mathcal{L}_ i'')^{\otimes n_ i''} \otimes \ldots \otimes \mathcal{L}_ d^{\otimes n_ d}|_ Z) \]

is a numerical polynomial of total degree at most $d$ in $d + 1$ variables. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)