Lemma 110.21.1. There exists a Jacobson, universally catenary, Noetherian domain $B$ with maximal ideals $\mathfrak m_1, \mathfrak m_2$ such that $\dim (B_{\mathfrak m_1}) = 1$ and $\dim (B_{\mathfrak m_2}) = 2$.
Proof. The construction of $B$ is given above. We just point out that $B$ is universally catenary by Algebra, Lemma 10.105.4 and Morphisms, Lemma 29.17.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)