The Stacks project

Lemma 47.12.5. With notation and hypotheses as in Lemma 47.12.4 assume $A$ is $I$-adically complete. Then

\[ H^0(R\Gamma _ Z(M)^\wedge ) = \mathop{\mathrm{colim}}\nolimits H^0_{V(J')}(M) \]

where the filtered colimit is over $J' \subset J$ such that $V(J') \cap V(I) = V(J) \cap V(I)$.

Proof. Since $M$ is a finite $A$-module, we have that $M$ is $I$-adically complete. The proof of Lemma 47.12.4 shows that

\[ H^0(R\Gamma _ Z(M)^\wedge ) = \mathop{\mathrm{Ker}}(M^\wedge \to \prod M_{g_ j}^\wedge ) = \mathop{\mathrm{Ker}}(M \to \prod M_{g_ j}^\wedge ) \]

where on the right hand side we have usual $I$-adic completion. The kernel $K_ j$ of $M_{g_ j} \to M_{g_ j}^\wedge $ is $\bigcap I^ n M_{g_ j}$. By Algebra, Lemma 10.51.5 for every $\mathfrak p \in V(IA_{g_ j})$ we find an $f \in A_{g_ j}$, $f \not\in \mathfrak p$ such that $(K_ j)_ f = 0$.

Let $s \in H^0(R\Gamma _ Z(M)^\wedge )$. By the above we may think of $s$ as an element of $M$. The support $Z'$ of $s$ intersected with $D(g_ j)$ is disjoint from $D(g_ j) \cap V(I)$ by the arguments above. Thus $Z'$ is a closed subset of $\mathop{\mathrm{Spec}}(A)$ with $Z' \cap V(I) \subset V(J)$. Then $Z' \cup V(J) = V(J')$ for some ideal $J' \subset J$ with $V(J') \cap V(I) \subset V(J)$ and we have $s \in H^0_{V(J')}(M)$. Conversely, any $s \in H^0_{V(J')}(M)$ with $J' \subset J$ and $V(J') \cap V(I) \subset V(J)$ maps to zero in $M_{g_ j}^\wedge $ for all $j$. This proves the lemma. $\square$


Comments (0)

There are also:

  • 5 comment(s) on Section 47.12: Torsion versus complete modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EEX. Beware of the difference between the letter 'O' and the digit '0'.