Example 52.12.4. Let $A$ be a Noetherian domain which has a dualizing complex and which is complete with respect to a nonzero $f \in A$. Let $f \in \mathfrak a \subset A$ be an ideal. Assume every irreducible component of $Z = V(\mathfrak a)$ has codimension $> 2$ in $X = \mathop{\mathrm{Spec}}(A)$. Equivalently, assume every irreducible component of $Z$ has codimension $> 1$ in $Y = V(f)$. Then with $U = X \setminus Z$ every element of
is the restriction of a section of $\mathcal{O}_ U$ defined on an open neighbourhood of
In particular we see that $Y \setminus Z$ is connected. See Lemma 52.14.2 below.
Comments (0)