Email from Kovacs of 23/02/2018.
Lemma 15.97.6 (Kollár-Kovács). Let I be an ideal of a Noetherian ring A. Let K \in D(A). Set K_ n = K \otimes _ A^\mathbf {L} A/I^ n. Assume for all i \in \mathbf{Z} we have
H^ i(K) is a finite A-module, and
the system H^ i(K_ n) satisfies Mittag-Leffler.
Then \mathop{\mathrm{lim}}\nolimits H^ i(K)/I^ nH^ i(K) is equal to \mathop{\mathrm{lim}}\nolimits H^ i(K_ n) for all i \in \mathbf{Z}.
Proof.
Recall that K^\wedge = R\mathop{\mathrm{lim}}\nolimits K_ n is the derived completion of K, see Proposition 15.94.2. By Lemma 15.94.4 we have H^ i(K^\wedge ) = \mathop{\mathrm{lim}}\nolimits H^ i(K)/I^ nH^ i(K). By Lemma 15.87.4 we get short exact sequences
0 \to R^1\mathop{\mathrm{lim}}\nolimits H^{i - 1}(K_ n) \to H^ i(K^\wedge ) \to \mathop{\mathrm{lim}}\nolimits H^ i(K_ n) \to 0
The Mittag-Leffler condition guarantees that the left terms are zero (Lemma 15.87.1) and we conclude the lemma is true.
\square
Comments (0)