The Stacks project

Lemma 15.99.1. Let $I$ be an ideal of a Noetherian ring $A$. Let $ K \xrightarrow {\alpha } L \xrightarrow {\beta } M $ be a complex of finite $A$-modules. Set $H = \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha )$. For $n \geq 0$ let

\[ K/I^ nK \xrightarrow {\alpha _ n} L/I^ nL \xrightarrow {\beta _ n} M/I^ nM \]

be the induced complex. Set $H_ n = \mathop{\mathrm{Ker}}(\beta _ n)/\mathop{\mathrm{Im}}(\alpha _ n)$. Then there are canonical $A$-module maps giving a commutative diagram

\[ \xymatrix{ & & & H \ar[lld] \ar[ld] \ar[d] \\ \ldots \ar[r] & H_3 \ar[r] & H_2 \ar[r] & H_1 } \]

Moreover, there exists a $c > 0$ and canonical $A$-module maps $H_ n \to H/I^{n - c}H$ for $n \geq c$ such that the compositions

\[ H/I^ n H \to H_ n \to H/I^{n - c}H \quad \text{and}\quad H_ n \to H/I^{n - c}H \to H_{n - c} \]

are the canonical ones. Moreover, we have

  1. $(H_ n)$ and $(H/I^ nH)$ are isomorphic as pro-objects of $\text{Mod}_ A$,

  2. $\mathop{\mathrm{lim}}\nolimits H_ n = \mathop{\mathrm{lim}}\nolimits H/I^ n H$,

  3. the inverse system $(H_ n)$ is Mittag-Leffler,

  4. the image of $H_{n + c} \to H_ n$ is equal to the image of $H \to H_ n$,

  5. the composition $I^ cH_ n \to H_ n \to H/I^{n - c}H \to H_ n/I^{n - c}H_ n$ is the inclusion $I^ cH_ n \to H_ n$ followed by the quotient map $H_ n \to H_ n/I^{n - c}H_ n$, and

  6. the kernel and cokernel of $H/I^ nH \to H_ n$ is annihilated by $I^ c$.

Proof. Observe that $H_ n = \beta ^{-1}(I^ nM)/\mathop{\mathrm{Im}}(\alpha ) + I^ nL$. For $n \geq 2$ we have $\beta ^{-1}(I^ nM) \subset \beta ^{-1}(I^{n - 1}M)$ and $\mathop{\mathrm{Im}}(\alpha ) + I^ nL \subset \mathop{\mathrm{Im}}(\alpha ) + I^{n - 1}L$. Thus we obtain our canonical map $H_ n \to H_{n - 1}$. Similarly, we have $\mathop{\mathrm{Ker}}(\beta ) \subset \beta ^{-1}(I^ nM)$ and $\mathop{\mathrm{Im}}(\alpha ) \subset \mathop{\mathrm{Im}}(\alpha ) + I^ nL$ which produces the canonical map $H \to H_ n$. We omit the verification that the diagram commutes.

By Artin-Rees we may choose $c_1, c_2 \geq 0$ such that $\beta ^{-1}(I^ nM) \subset \mathop{\mathrm{Ker}}(\beta ) + I^{n - c_1}L$ for $n \geq c_1$ and $\mathop{\mathrm{Ker}}(\beta ) \cap I^ nL \subset I^{n - c_2}\mathop{\mathrm{Ker}}(\beta )$ for $n \geq c_2$, see Algebra, Lemmas 10.51.3 and 10.51.2. Set $c = c_1 + c_2$.

Let $n \geq c$. We define $\psi _ n : H_ n \to H/I^{n - c}H$ as follows. Say $x \in H_ n$. Choose $y \in \beta ^{-1}(I^ nM)$ representing $x$. Write $y = z + w$ with $z \in \mathop{\mathrm{Ker}}(\beta )$ and $w \in I^{n - c_1}L$ (this is possible by our choice of $c_1$). We set $\psi _ n(x)$ equal to the class of $z$ in $H/I^{n - c}H$. To see this is well defined, suppose we have a second set of choices $y', z', w'$ as above for $x$ with obvious notation. Then $y' - y \in \mathop{\mathrm{Im}}(\alpha ) + I^ nL$, say $y' - y = \alpha (v) + u$ with $v \in K$ and $u \in I^ nL$. Thus

\[ y' = z' + w' = \alpha (v) + u + z + w \Rightarrow z' = z + \alpha (v) + u + w - w' \]

Since $\beta (z' - z - \alpha (v)) = 0$ we find that $u + w - w' \in \mathop{\mathrm{Ker}}(\beta ) \cap I^{n - c_1}L$ which is contained in $I^{n - c_1 - c_2}\mathop{\mathrm{Ker}}(\beta ) = I^{n - c}\mathop{\mathrm{Ker}}(\beta )$ by our choice of $c_2$. Thus $z'$ and $z$ have the same image in $H/I^{n - c}H$ as desired.

The composition $H/I^ n H \to H_ n \to H/I^{n - c}H$ is the canonical map because if $z \in \mathop{\mathrm{Ker}}(\beta )$ represents an element $x$ in $H/I^ nH = \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha ) + I^ n\mathop{\mathrm{Ker}}(\beta )$ then it is clear from the above that $x$ maps to the class of $z$ in $H/I^{n - c}H$ under the maps constructed above.

Let us consider the composition $H_ n \to H/I^{n - c}H \to H_{n - c}$. Given $x, y, z, w$ as in the construction of $\psi _ n$ above, we see that $x$ is mapped to the cass of $z$ in $H_{n - c}$. On the other hand, the canonical map $H_ n \to H_{n - c}$ from the first paragraph of the proof sends $x$ to the class of $y$. Thus we have to show that $y - z \in \mathop{\mathrm{Im}}(\alpha ) + I^{n - c}L$ which is the case because $y - z = w \in I^{n - c_1}L \subset I^{n - c}L$.

Statements (1) – (4) are formal consequences of what we just proved. Namely, (1) follows from the existence of the maps and the definition of morphisms of pro-objects in Categories, Remark 4.22.5. Part (2) holds because isomorphic pro-objects have isomorphic limits. Part (3) is immediate from part (4). Part (4) follows from the factorization $H_{n + c} \to H/I^ nH \to H_ n$ of the canonical map $H_{n + c} \to H_ n$.

Proof of part (5). Let $x \in I^ cH_ n$. Write $x = \sum f_ i x_ i$ with $x_ i \in H_ n$ and $f_ i \in I^ c$. Choose $y_ i, z_ i, w_ i$ as in the construction of $\psi _ n$ for $x_ i$. Then for the computation of $\psi _ n$ of $x$ we may choose $y = \sum f_ iy_ i$, $z = \sum f_ i z_ i$ and $w = \sum f_ i w_ i$ and we see that $\psi _ n(x)$ is given by the class of $z$. The image of this in $H_ n/I^{n - c}H_ n$ is equal to the class of $y$ as $w = \sum f_ i w_ i$ is in $I^ nL$. This proves (5).

Proof of part (6). Let $y \in \mathop{\mathrm{Ker}}(\beta )$ whose class is $x$ in $H$. If $x$ maps to zero in $H_ n$, then $y \in I^ nL + \mathop{\mathrm{Im}}(\alpha )$. Hence $y - \alpha (v) \in \mathop{\mathrm{Ker}}(\beta ) \cap I^ nL$ for some $v \in K$. Then $y - \alpha (v) \in I^{n - c_2}\mathop{\mathrm{Ker}}(\beta )$ and hence the class of $y$ in $H/I^ nH$ is annihilated by $I^{c_2}$. Finally, let $x \in H_ n$ be the class of $y \in \beta ^{-1}(I^ nM)$. Then we write $y = z + w$ with $z \in \mathop{\mathrm{Ker}}(\beta )$ and $w \in I^{n - c_1}L$ as above. Clearly, if $f \in I^{c_1}$ then $fx$ is the class of $fy + fw \equiv fy$ modulo $\mathop{\mathrm{Im}}(\alpha ) + I^ nL$ and hence $fx$ is the image of the class of $fy$ in $H$ as desired. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EGU. Beware of the difference between the letter 'O' and the digit '0'.