The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

15.88 Systems of modules

Let $I$ be an ideal of a Noetherian ring $A$. In this section we add to our knowledge of the relationship between finite modules over $A$ and systems of finite $A/I^ n$-modules.

Lemma 15.88.1. Let $I$ be an ideal of a Noetherian ring $A$. Let $ K \xrightarrow {\alpha } L \xrightarrow {\beta } M $ be a complex of finite $A$-modules. Set $H = \mathop{\mathrm{Ker}}(\alpha )/\mathop{\mathrm{Im}}(\beta )$. For $n \geq 0$ let

\[ K/I^ nK \xrightarrow {\alpha _ n} L/I^ nL \xrightarrow {\beta _ n} M/I^ nM \]

be the induced complex. Set $H_ n = \mathop{\mathrm{Ker}}(\alpha _ n)/\mathop{\mathrm{Im}}(\beta _ n)$. Then $H_ n$ is an inverse system of $A$-modules, there are canonical maps $H \to H_ n$ compatible for varying $n$, the system $(H_ n)$ is Mittag-Leffler, there is a $c \geq 0$ such that the image of $H_{n + c} \to H_ n$ is equal to the image of $H \to H_ n$, and $\mathop{\mathrm{lim}}\nolimits H_ n = \mathop{\mathrm{lim}}\nolimits H/I^ n H$. Moreover, there is a $c \geq 0$ and canonical maps

\[ H_ n \to H/I^{n - c}H \quad \text{for }n \geq c \]

such that the composition $H \to H_ n \to H/I^{n - c}H$ is the quotient map and the composition $I^ cH_ n \to H_ n \to H/I^{n - c}H \to H_ n/I^{n - c}H_ n$ is the inclusion $I^ cH_ n \to H_ n$ followed by the quotient map $H_ n \to H_ n/I^{n - c}H_ n$.

Proof. The construction of the canonical maps $H_{n + 1} \to H_ n$ and $H \to H_ n$ is left to the reader. Choose $c_1 \geq 0$ such that $\beta ^{-1}(I^ nM) \subset \mathop{\mathrm{Ker}}(\beta ) + I^{n - c_1}L$ for $n \geq c_1$ (Algebra, Lemma 10.50.3). Then $\mathop{\mathrm{Im}}(H_{n + c_1} \to H_ n) = \mathop{\mathrm{Im}}(H \to H_ n)$ and the Mittag-Leffler property holds. It follows that $\mathop{\mathrm{lim}}\nolimits H/I^ nH \to \mathop{\mathrm{lim}}\nolimits H_ n$ is surjective (small detail omitted).

Choose $c_2 \geq 0$ such that $\mathop{\mathrm{Ker}}(\beta ) \cap I^ nL \subset I^{n - c_2}L$ for $n \geq c_2$ (Algebra, Lemma 10.50.2). Take $n \geq c_1 + c_2 = c$. Then we can define $H_ n \to H/I^{n - c}H$ for $n \geq c$ as follows. Given $x \in H_ n$ choose $y \in \beta ^{-1}(I^ nM)$ representing $x$. Write $y = z + z'$ with $z \in \mathop{\mathrm{Ker}}(\beta )$ and $z' \in I^{n - c_1}L$ (possible by choice of $c_1$). Then we map $x$ to the class of $z$ in $H/I^{n - c}H$. This is well defined by choice of $c_2$ and the fact that $c = c_1 + c_2$. The statement on the composition $H \to H_ n \to H/I^{n - c}H$ is immediate. The composition $H_ n \to H/I^{n - c}H \to H_ n/I^{n - c}H_ n$ may not be the identity as $y$ and $z$ may not have the same class in $H_ n/I^{n - c}H_ n$. However, if $x \in I^{c_1}H_ n$, then writing $x = \sum f_ i x_ i$ with $x_ i \in H_ n$ and $f_ i \in I^{c_1}$ we see that we can choose $y = \sum f_ iy_ i$, $z = \sum f_ i z_ i$ and $z' = \sum f_ i z'_ i$ where $y_ i, z_ i, z'_ i$ are suitable choices for $x_ i$. Then $z' \in I^ nL$ and we conclude $y$ and $z$ do determine the same class in $H_ n$ which proves the final statement.

It follows that $\mathop{\mathrm{lim}}\nolimits H/I^ n H \to \mathop{\mathrm{lim}}\nolimits H_ n$ is injective (as well as surjective, see above) because this map has a left inverse using the maps we just constructed and the obvious equality $\mathop{\mathrm{lim}}\nolimits H/I^{n - c}H = \mathop{\mathrm{lim}}\nolimits H/I^ nH$. This finishes the proof. $\square$

reference

Lemma 15.88.2. Let $I$ be an ideal of a Noetherian ring $A$. Let $K \in D(A)$ be pseudo-coherent. Set $K_ n = K \otimes _ A^\mathbf {L} A/I^ n$. Then for all $i \in \mathbf{Z}$ the system $H^ i(K_ n)$ satisfies Mittag-Leffler and $\mathop{\mathrm{lim}}\nolimits H^ i(K)/I^ nH^ i(K)$ is equal to $\mathop{\mathrm{lim}}\nolimits H^ i(K_ n)$.

Proof. We may represent $K$ by a bounded above complex $P^\bullet $ of finite free $A$-modules. Then $K_ n$ is represented by $P^\bullet /I^ nP^\bullet $. Hence the Mittag-Leffler property by Lemma 15.88.1. The final statement follows then from Lemma 15.85.6. $\square$

Lemma 15.88.3. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$, $N$ be finite $A$-modules. Set $M_ n = M/I^ nM$ and $N_ n = N/I^ nN$. Then

  1. the systems $(\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n))$ and $(\text{Isom}_ A(M_ n, N_ n))$ are Mittag-Leffler,

  2. there exists a $c \geq 0$ such that the kernels and cokernels of

    \[ \mathop{\mathrm{Hom}}\nolimits _ A(M, N)/I^ n\mathop{\mathrm{Hom}}\nolimits _ A(M, N) \to \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) \]

    are killed by $I^ c$ for all $n$,

  3. we have $\mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) =\mathop{\mathrm{Hom}}\nolimits _ A(M, N)^\wedge = \mathop{\mathrm{Hom}}\nolimits _{A^\wedge }(M^\wedge , N^\wedge )$

  4. $\mathop{\mathrm{lim}}\nolimits \text{Isom}_ A(M_ n, N_ n) = \text{Isom}_{A^\wedge }(M^\wedge , N^\wedge )$.

Here ${}^\wedge $ denotes usual $I$-adic completion.

Proof. Note that $\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) = \mathop{\mathrm{Hom}}\nolimits _ A(M, N_ n)$. Choose a presentation

\[ A^{\oplus t} \to A^{\oplus s} \to M \to 0 \]

Applying the right exact functor $\mathop{\mathrm{Hom}}\nolimits _ A(-, N)$ we obtain a complex

\[ 0 \xrightarrow {\alpha } N^{\oplus s} \xrightarrow {\beta } N^{\oplus t} \]

whose cohomology in the middle is $\mathop{\mathrm{Hom}}\nolimits _ A(M, N)$ and such that for $n \geq 0$ the cohomology of

\[ 0 \xrightarrow {\alpha _ n} N_ n^{\oplus s} \xrightarrow {\beta _ n} N_ n^{\oplus t} \]

is $\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n)$. From Lemma 15.88.1 we deduce the Mittag-Leffler property for $(\mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n))$, we deduce part (2), and we find that $\mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n) =\mathop{\mathrm{Hom}}\nolimits _ A(M, N)^\wedge $. The equality $\mathop{\mathrm{Hom}}\nolimits _{A^\wedge }(M^\wedge , N^\wedge ) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(M_ n, N_ n)$ follows formally from the fact that $M^\wedge = \mathop{\mathrm{lim}}\nolimits M_ n$ and $M_ n = M^\wedge /I^ nM^\wedge $ and the corresponding facts for $N$, see Algebra, Lemma 10.96.4.

The result for isomorphisms follows from the case of homomorphisms applied to both $(\mathop{\mathrm{Hom}}\nolimits (M_ n, N_ n))$ and $(\mathop{\mathrm{Hom}}\nolimits (N_ n, M_ n))$ and the following fact: for $n > m > 0$, if we have maps $\alpha : M_ n \to N_ n$ and $\beta : N_ n \to M_ n$ which induce an isomorphisms $M_ m \to N_ m$ and $N_ m \to M_ m$, then $\alpha $ and $\beta $ are isomorphisms. Namely, then $\alpha \circ \beta $ is surjective by Nakayama's lemma (Algebra, Lemma 10.19.1) hence $\alpha \circ \beta $ is an isomorphism by Algebra, Lemma 10.15.4. $\square$

Lemma 15.88.4. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$, $N$ be finite $A$-modules. Set $M_ n = M/I^ nM$ and $N_ n = N/I^ nN$. If $M_ n \cong N_ n$ for all $n$, then $M^\wedge \cong N^\wedge $ as $A^\wedge $-modules.

Proof. By Lemma 15.88.3 the system $(\text{Isom}_ A(M_ n, N_ n))$ is Mittag-Leffler. By assumption each of the sets $\text{Isom}_ A(M_ n, N_ n)$ is nonempty. Hence $\mathop{\mathrm{lim}}\nolimits \text{Isom}_ A(M_ n, N_ n)$ is nonempty. Since $\mathop{\mathrm{lim}}\nolimits \text{Isom}_ A(M_ n, N_ n) = \text{Isom}_{A^\wedge }(M^\wedge , N^\wedge )$ we obtain an isomorphism. $\square$

Remark 15.88.5. Let $I$ be an ideal of a Noetherian ring $A$. Set $A_ n = A/I^ n$ for $n \geq 1$. Consider the following category:

  1. An object is a sequence $\{ E_ n\} _{n \geq 1}$ where $E_ n$ is a finite $A_ n$-module.

  2. A morphism $\{ E_ n\} \to \{ E'_ n\} $ is given by maps and maps

    \[ \varphi _ n : I^ cE_ n \longrightarrow E'_ n/E'_ n[I^ c] \quad \text{for }n \geq c \]

    where $E'_ n[I^ c]$ is the torsion submodule (Section 15.79) up to equivalence: we say $(c, \varphi _ n)$ is the same as $(c + 1, \overline{\varphi }_ n)$ where $\overline{\varphi }_ n : I^{c + 1}E_ n \longrightarrow E'_ n/E'_ n[I^{c + 1}]$ is the induced map.

Composition of $(c, \varphi _ n) : \{ E_ n\} \to \{ E'_ n\} $ and $(c', \varphi '_ n) : \{ E'_ n\} \to \{ E''_ n\} $ is defined by the obvious compositions

\[ I^{c + c'}E_ n \to I^{c'}E'_ n/E'_ n[I^{c}] \to E''_ n/E''_ n[I^{c + c'}] \]

for $n \geq c + c'$. We omit the verification that this is a category.

Lemma 15.88.6. A morphism $(c, \varphi _ n)$ of the category of Remark 15.88.5 is an isomorphism if and only if there exists a $c' \geq 0$ such that $\mathop{\mathrm{Ker}}(\varphi _ n)$ and $\mathop{\mathrm{Coker}}(\varphi _ n)$ are $I^{c'}$-torsion for all $n \gg 0$.

Proof. We may and do assume $c' \geq c$ and that the $\mathop{\mathrm{Ker}}(\varphi _ n)$ and $\mathop{\mathrm{Coker}}(\varphi _ n)$ are $I^{c'}$-torsion for all $n$. For $n \geq c'$ and $x \in I^{c'}E'_ n$ we can choose $y \in I^ cE_ n$ with $x = \varphi _ n(y) \bmod E'_ n[I^ c]$ as $\mathop{\mathrm{Coker}}(\varphi _ n)$ is annihilated by $I^{c'}$. Set $\psi _ n(x)$ equal to the class of $y$ in $E_ n/E_ n[I^{c'}]$. For a different choice $y' \in I^ cE_ n$ with $x = \varphi _ n(y') \bmod E'_ n[I^ c]$ the difference $y - y'$ maps to zero in $E'_ n/E'_ n[I^ c]$ and hence is annihilated by $I^{c'}$ in $I^ cE_ n$. Thus the maps $\psi _ n : I^{c'}E'_ n \to E_ n/E_ n[I^{c'}]$ are well defined. We omit the verification that $(c', \psi _ n)$ is the inverse of $(c, \varphi _ n)$ in the category. $\square$

reference

Lemma 15.88.7. Let $I$ be an ideal of the Noetherian ring $A$. Let $M$ and $N$ be finite $A$-modules. Write $A_ n = A/I^ n$, $M_ n = M/I^ nM$, and $N_ n = N/I^ nN$. For every $i \geq 0$ the objects

\[ \{ \mathop{\mathrm{Ext}}\nolimits ^ i_ A(M, N)/I^ n\mathop{\mathrm{Ext}}\nolimits ^ i_ A(M, N)\} _{n \geq 1} \quad \text{and}\quad \{ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)\} _{n \geq 1} \]

are isomorphic in the category $\mathcal{C}$ of Remark 15.88.5.

Proof. Choose a short exact sequence

\[ 0 \to K \to A^{\oplus r} \to M \to 0 \]

For $n \geq 1$ define $K(n) = \mathop{\mathrm{Ker}}(A_ n^{\oplus r} \to M_ n)$ so that we have exact sequences

\[ 0 \to K(n) \to A_ n^{\oplus r} \to M_ n \to 0 \]

and surjections $K_ n \to K(n)$. In fact, by Lemma 15.88.1 there is a $c \geq 0$ and maps $K(n) \to K_ n/I^{n - c}K_ n$ which are “almost inverse”. Since $I^{n - c}K_ n \subset K_ n[I^ c]$ these maps which witness the fact that the systems $\{ K(n)\} _{n \geq 1}$ and $\{ K_ n\} _{n \geq 1}$ are isomorphic in $\mathcal{C}$.

We claim the systems

\[ \{ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K(n), N_ n)\} _{n \geq 1} \quad \text{and}\quad \{ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K_ n, N_ n)\} _{n \geq 1} \]

are isomorphic in the category $\mathcal{C}$. Namely, the surjective maps $K_ n \to K(n)$ have kernels annihilated by $I^ c$ and therefore determine maps

\[ \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K(n), N_ n) \to \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(K_ n, N_ n) \]

whose kernel and cokernel are annihilated by $I^ c$. Hence the claim by Lemma 15.88.6.

For $i \geq 2$ we have isomorphisms

\[ \mathop{\mathrm{Ext}}\nolimits ^{i - 1}_ A(K, N) = \mathop{\mathrm{Ext}}\nolimits ^ i_ A(M, N) \quad \text{and}\quad \mathop{\mathrm{Ext}}\nolimits ^{i - 1}_{A_ n}(K(n), N_ n) = \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n) \]

In this way we see that it suffices to prove the lemma for $i = 0, 1$.

For $i = 0, 1$ we consider the commutative diagram

\[ \xymatrix{ 0 \ar[r] & \mathop{\mathrm{Hom}}\nolimits (M, N) \ar[r] \ar[dd] & N^{\oplus r} \ar[r]_-\varphi \ar[dd] & \mathop{\mathrm{Hom}}\nolimits (K, N) \ar[r] \ar[d] & \mathop{\mathrm{Ext}}\nolimits ^1(M, N) \ar[r] & 0 \\ & & & \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n) \\ 0 \ar[r] & \mathop{\mathrm{Hom}}\nolimits (M_ n, N_ n) \ar[r] & N_ n^{\oplus r} \ar[r] & \mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \ar[r] \ar[u] & \mathop{\mathrm{Ext}}\nolimits ^1(M_ n, N_ n) \ar[r] & 0 } \]

By Lemma 15.88.3 we see that the kernel and cokernel of $\mathop{\mathrm{Hom}}\nolimits (M, N)/I^ n \mathop{\mathrm{Hom}}\nolimits (M, N) \to \mathop{\mathrm{Hom}}\nolimits (M_ n, N_ n)$ and $\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n \mathop{\mathrm{Hom}}\nolimits (K, N) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$ and are $I^ c$-torsion for some $c \geq 0$ independent of $n$. Above we have seen the cokernel of the injective maps $\mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$ are annihilated by $I^ c$ after possibly increasing $c$. For such a $c$ we obtain maps $\delta _ n : I^ c\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n\mathop{\mathrm{Hom}}\nolimits (K, N) \to \mathop{\mathrm{Hom}}\nolimits (K(n), N_ n)$ fitting into the diagram (precise formulation omitted). The kernel and cokernel of $\delta _ n$ are annihilated by $I^ c$ after possibly increasing $c$ since we know that the same thing is true for $\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n \mathop{\mathrm{Hom}}\nolimits (K, N) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$ and $\mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \to \mathop{\mathrm{Hom}}\nolimits (K_ n, N_ n)$. Then we can use commutativity of the solid diagram

\[ \xymatrix{ \varphi ^{-1}(I^ c\mathop{\mathrm{Hom}}\nolimits (K, N)) \ar[r]_-\varphi \ar[d] & I^ c\mathop{\mathrm{Hom}}\nolimits (K, N)/I^ n\mathop{\mathrm{Hom}}\nolimits (K, N) \ar[r] \ar[d]^{\delta _ n} & I^ c\mathop{\mathrm{Ext}}\nolimits ^1(M, N)/I^ n\mathop{\mathrm{Ext}}\nolimits ^1(M, N) \ar[r] \ar@{..>}[d] & 0 \\ N_ n^{\oplus r} \ar[r] & \mathop{\mathrm{Hom}}\nolimits (K(n), N_ n) \ar[r] & \mathop{\mathrm{Ext}}\nolimits ^1(M_ n, N_ n) \ar[r] & 0 } \]

to define the dotted arrow. A straightforward diagram chase (omitted) shows that the kernel and cokernel of the dotted arrow are annihilated buy $I^ c$ after possibly increasing $c$ one final time. $\square$

Remark 15.88.8. The awkwardness in the statement of Lemma 15.88.7 is partly due to the fact that there are no obvious maps between the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)$ for varying $n$. What we may conclude from the lemma is that there exists a $c \geq 0$ such that for $m \gg n \gg 0$ there are (canonical) maps

\[ I^ c\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ m, N_ m)/I^ n\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ m, N_ m) \to \mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)/\mathop{\mathrm{Ext}}\nolimits ^ i_{A_ n}(M_ n, N_ n)[I^ c] \]

whose kernel and cokernel are annihilated by $I^ c$. This is the (weak) sense in which we get a system of modules.

Example 15.88.9. Let $k$ be a field. Let $A = k[[x, y]]/(xy)$. By abuse of notation we denote $x$ and $y$ the images of $x$ and $y$ in $A$. Let $I = (x)$. Let $M = A/(y)$. There is a free resolution

\[ \ldots \to A \xrightarrow {y} A \xrightarrow {x} A \xrightarrow {y} A \to M \to 0 \]

We conclude that

\[ \mathop{\mathrm{Ext}}\nolimits ^2_ A(M, N) = N[y]/xN \]

where $N[y] = \mathop{\mathrm{Ker}}(y : N \to N)$. We denote $A_ n = A/I^ n$, $M_ n = M/I^ nM$, and $N_ n = N/I^ nN$. For each $n$ we have a free resolution

\[ \ldots \to A_ n^{\oplus 2} \xrightarrow {y, x^{n - 1}} A_ n \xrightarrow {x} A_ n \xrightarrow {y} A_ n \to M_ n \to 0 \]

We conclude that

\[ \mathop{\mathrm{Ext}}\nolimits ^2_{A_ n}(M_ n, N_ n) = (N_ n[y] \cap N_ n[x^{n - 1}])/xN_ n \]

where $N_ n[y] = \mathop{\mathrm{Ker}}(y : N_ n \to N_ n)$ and $N[x^{n - 1}] = \mathop{\mathrm{Ker}}(x^{n - 1} : N_ n \to N_ n)$. Take $N = A/(y)$. Then we see that

\[ \mathop{\mathrm{Ext}}\nolimits ^2_ A(M, N) = N[y]/xN = N/xN \cong k \]

but

\[ \mathop{\mathrm{Ext}}\nolimits ^2_{A_ n}(M_ n, N_ n) = (N_ n[y] \cap N_ n[x^{n - 1}])/xN_ n = N_ n[x^{n - 1}]/xN_ n = 0 \]

for all $r$ because $N_ n = k[x]/(x^ n)$ and the sequence

\[ N_ n \xrightarrow {x} N_ n \xrightarrow {x^{n - 1}} N_ n \]

is exact. Thus ignoring some kind of $I$-power torsion is necessary to get a result as in Lemma 15.88.7.

reference

Lemma 15.88.10. Let $A \to B$ be a flat homomorphism of Noetherian rings. Let $I \subset A$ be an ideal. Let $M, N$ be $A$-modules. Set $B_ n = B/I^ nB$, $M_ n = M/I^ nM$, $N_ n = N/I^ nN$. If $M$ is flat over $A$, then we have

\[ \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N)/I^ n \mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ i_{B_ n}(M_ n, N_ n) \]

for all $i \in \mathbf{Z}$.

Proof. Choose a resolution

\[ \ldots \to P_2 \to P_1 \to P_0 \to M \to 0 \]

by finite free $B$-modues $P_ i$. Set $P_{i, n} = P_ i/I^ nP_ i$. Since $M$ and $B$ are flat over $A$, the sequence

\[ \ldots \to P_{2, n} \to P_{1, n} \to P_{0, n} \to M_ n \to 0 \]

is exact. We conclude that the base change of the complex

\[ \mathop{\mathrm{Hom}}\nolimits _ B(P_0, N) \to \mathop{\mathrm{Hom}}\nolimits _ B(P_1, N) \to \mathop{\mathrm{Hom}}\nolimits _ B(P_2, N) \to \ldots \]

which computes the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N)$ by the map $B \to B_ n$ is the complex

\[ \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{0, n}, N_ n) \to \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{1, n}, N_ n) \to \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{2, n}, N_ n) \to \ldots \]

which computes the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_{B_ n}(M_ n, N_ n)$. Thus the result by Lemma 15.88.1. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EGT. Beware of the difference between the letter 'O' and the digit '0'.