The Stacks project

Email correspondence between Janos Kollar, Sandor Kovacs, and Johan de Jong of 23/02/2018.

Lemma 15.100.11. Let $A \to B$ be a flat homomorphism of Noetherian rings. Let $I \subset A$ be an ideal. Let $M, N$ be $A$-modules. Set $B_ n = B/I^ nB$, $M_ n = M/I^ nM$, $N_ n = N/I^ nN$. If $M$ is flat over $A$, then we have

\[ \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N)/I^ n \mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Ext}}\nolimits ^ i_{B_ n}(M_ n, N_ n) \]

for all $i \in \mathbf{Z}$.

Proof. Choose a resolution

\[ \ldots \to P_2 \to P_1 \to P_0 \to M \to 0 \]

by finite free $B$-modues $P_ i$. Set $P_{i, n} = P_ i/I^ nP_ i$. Since $M$ and $B$ are flat over $A$, the sequence

\[ \ldots \to P_{2, n} \to P_{1, n} \to P_{0, n} \to M_ n \to 0 \]

is exact. We see that on the one hand the complex

\[ \mathop{\mathrm{Hom}}\nolimits _ B(P_0, N) \to \mathop{\mathrm{Hom}}\nolimits _ B(P_1, N) \to \mathop{\mathrm{Hom}}\nolimits _ B(P_2, N) \to \ldots \]

computes the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_ B(M, N)$ and on the other hand the complex

\[ \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{0, n}, N_ n) \to \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{1, n}, N_ n) \to \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{2, n}, N_ n) \to \ldots \]

computes the modules $\mathop{\mathrm{Ext}}\nolimits ^ i_{B_ n}(M_ n, N_ n)$. Since

\[ \mathop{\mathrm{Hom}}\nolimits _{B_ n}(P_{i, n}, N_ n) = \mathop{\mathrm{Hom}}\nolimits _ B(P_ i, N)/I^ n \mathop{\mathrm{Hom}}\nolimits _ B(P_ i, N) \]

we obtain the result from Lemma 15.100.1 part (2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EH0. Beware of the difference between the letter 'O' and the digit '0'.