The Stacks project

15.100 Systems of modules, bis

Let $I$ be an ideal of a Noetherian ring $A$. In Section 15.99 we considered what happens when considering systems of the form $M/I^ nM$ for finite $A$-modules $M$. In this section we consider the systems $I^ nM$ instead.

Lemma 15.100.1. Let $I$ be an ideal of a Noetherian ring $A$. Let $ K \xrightarrow {\alpha } L \xrightarrow {\beta } M $ be a complex of finite $A$-modules. Set $H = \mathop{\mathrm{Ker}}(\beta )/\mathop{\mathrm{Im}}(\alpha )$. For $n \geq 0$ let

\[ I^ nK \xrightarrow {\alpha _ n} I^ nL \xrightarrow {\beta _ n} I^ nM \]

be the induced complex. Set $H_ n = \mathop{\mathrm{Ker}}(\beta _ n)/\mathop{\mathrm{Im}}(\alpha _ n)$. Then there are canonical $A$-module maps

\[ \ldots \to H_3 \to H_2 \to H_1 \to H \]

There exists a $c > 0$ such that for $n \geq c$ the image of $H_ n \to H$ is contained in $I^{n - c}H$ and there is a canonical $A$-module map $I^ nH \to H_{n - c}$ such that the compositions

\[ I^ n H \to H_{n - c} \to I^{n - 2c}H \quad \text{and}\quad H_ n \to I^{n - c}H \to H_{n - 2c} \]

are the canonical ones. In particular, the inverse systems $(H_ n)$ and $(I^ nH)$ are isomorphic as pro-objects of $\text{Mod}_ A$.

Proof. We have $H_ n = \mathop{\mathrm{Ker}}(\beta ) \cap I^ nL/\alpha (I^ nK)$. Since $\mathop{\mathrm{Ker}}(\beta ) \cap I^ nL \subset \mathop{\mathrm{Ker}}(\beta ) \cap I^{n - 1}L$ and $\alpha (I^ nK) \subset \alpha (I^{n - 1}K)$ we get the maps $H_ n \to H_{n - 1}$. Similarly for the map $H_1 \to H$.

By Artin-Rees we may choose $c_1, c_2 \geq 0$ such that $\mathop{\mathrm{Im}}(\alpha ) \cap I^ nL \subset \alpha (I^{n - c_1}K)$ for $n \geq c_1$ and $\mathop{\mathrm{Ker}}(\beta ) \cap I^ nL \subset I^{n - c_2}\mathop{\mathrm{Ker}}(\beta )$ for $n \geq c_2$, see Algebra, Lemmas 10.51.3 and 10.51.2. Set $c = c_1 + c_2$.

It follows immediately from our choice of $c \geq c_2$ that for $n \geq c$ the image of $H_ n \to H$ is contained in $I^{n - c}H$.

Let $n \geq c$. We define $\psi _ n : I^ nH \to H_{n - c}$ as follows. Say $x \in I^ nH$. Choose $y \in I^ n\mathop{\mathrm{Ker}}(\beta )$ representing $x$. We set $\psi _ n(x)$ equal to the class of $y$ in $H_{n - c}$. To see this is well defined, suppose we have a second choice $y'$ as above for $x$. Then $y' - y \in \mathop{\mathrm{Im}}(\alpha )$. By our choice of $c \geq c_1$ we conclude that $y' - y \in \alpha (I^{n - c}K)$ which implies that $y$ and $y'$ represent the same element of $H_{n - c}$. Thus $\psi _ n$ is well defined.

The statements on the compositions $I^ n H \to H_{n - c} \to I^{n - 2c}H$ and $H_ n \to I^{n - c}H \to H_{n - 2c}$ follow immediately from our definitions. $\square$

Lemma 15.100.2. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$, $N$ be $A$-modules with $M$ finite. For each $p > 0$ there exists a $c \geq 0$ such that for $n \geq c$ the map $\mathop{\mathrm{Ext}}\nolimits _ A^ p(M, N) \to \mathop{\mathrm{Ext}}\nolimits _ A^ p(I^ nM, N)$ factors through $\mathop{\mathrm{Ext}}\nolimits ^ p_ A(I^ nM, I^{n - c}N) \to \mathop{\mathrm{Ext}}\nolimits _ A^ p(I^ nM, N)$.

Proof. For $p = 0$, if $\varphi : M \to N$ is an $A$-linear map, then $\varphi (\sum f_ i m_ i) = \sum f_ i \varphi (m_ i)$ for $f_ i \in A$ and $m_ i \in M$. Hence $\varphi $ induces a map $I^ nM \to I^ nN$ for all $n$ and the result is true with $c = 0$.

Choose a short exact sequence $0 \to K \to A^{\oplus t} \to M \to 0$. For each $n$ we pick a short exact sequence $0 \to L_ n \to A^{\oplus s_ n} \to I^ nM \to 0$. It is clear that we can construct a map of short exact sequences

\[ \xymatrix{ 0 \ar[r] & L_ n \ar[r] \ar[d] & A^{\oplus s_ n} \ar[r] \ar[d] & I^ nM \ar[r] \ar[d] & 0 \\ 0 \ar[r] & K \ar[r] & A^{\oplus t} \ar[r] & M \ar[r] & 0 } \]

such that $A^{\oplus s_ n} \to A^{\oplus t}$ has image in $(I^ n)^{\oplus t}$. By Artin-Rees (Algebra, Lemma 10.51.2) there exists a $c \geq 0$ such that $L_ n \to K$ factors through $I^{n - c}K$ if $n \geq c$.

For $p = 1$ our choices above induce a solid commutative diagram

\[ \xymatrix{ \mathop{\mathrm{Hom}}\nolimits _ A(A^{\oplus s_ n}, N) \ar[r] & \mathop{\mathrm{Hom}}\nolimits _ A(L_ n, N) \ar[r] & \mathop{\mathrm{Ext}}\nolimits _ A^1(I^ nM, N) \ar[r] & 0 \\ \mathop{\mathrm{Hom}}\nolimits _ A((I^ n)^{\oplus t}, I^{n - c}N) \ar[r] \ar[u] & \mathop{\mathrm{Hom}}\nolimits _ A(K \cap (I^ n)^{\oplus t}, I^{n - c}N) \ar[r] \ar[u] & \mathop{\mathrm{Ext}}\nolimits _ A^1(I^ nM, I^{n - c}N) \ar[u] \\ \mathop{\mathrm{Hom}}\nolimits _ A(A^{\oplus t}, N) \ar[r] \ar[u] & \mathop{\mathrm{Hom}}\nolimits _ A(K, N) \ar[r] \ar[u] & \mathop{\mathrm{Ext}}\nolimits _ A^1(M, N) \ar@{..>}[u] \ar[r] & 0 } \]

whose horizontal arrows are exact. The lower middle vertical arrow arises because $K \cap (I^ n)^{\oplus t} \subset I^{n - c}K$ and hence any $A$-linear map $K \to N$ induces an $A$-linear map $(I^ n)^{\oplus t} \to I^{n - c}N$ by the argument of the first paragraph. Thus we obtain the dotted arrow as desired.

For $p > 1$ we obtain a commutative diagram

\[ \xymatrix{ \mathop{\mathrm{Ext}}\nolimits ^{p - 1}_ A(I^{n - c}K, N) \ar[r] & \mathop{\mathrm{Ext}}\nolimits ^{p - 1}_ A(L_ n, N) \ar[r] & \mathop{\mathrm{Ext}}\nolimits _ A^ p(I^ nM, N) \\ \mathop{\mathrm{Ext}}\nolimits ^{p - 1}_ A(K, N) \ar[rr] \ar[u] & & \mathop{\mathrm{Ext}}\nolimits _ A^ p(M, N) \ar[u] } \]

whose bottom horizontal arrow is an isomorphism. By induction on $p$ the left vertical map factors through $\mathop{\mathrm{Ext}}\nolimits ^{p - 1}_ A(I^{n - c}K, I^{n - c - c'}N)$ for some $c' \geq 0$ and all $n \geq c + c'$. Using the composition $\mathop{\mathrm{Ext}}\nolimits ^{p - 1}_ A(I^{n - c}K, I^{n - c - c'}N) \to \mathop{\mathrm{Ext}}\nolimits ^{p - 1}_ A(L_ n, I^{n - c - c'}N) \to \mathop{\mathrm{Ext}}\nolimits ^ p_ A(I^ nM, I^{n - c - c'}N)$ we obtain the desired factorization (for $n \geq c + c'$ and with $c$ replaced by $c + c'$). $\square$

Lemma 15.100.3. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$, $N$ be $A$-modules with $M$ finite and $N$ annihilated by a power of $I$. For each $p > 0$ there exists an $n$ such that the map $\mathop{\mathrm{Ext}}\nolimits _ A^ p(M, N) \to \mathop{\mathrm{Ext}}\nolimits _ A^ p(I^ nM, N)$ is zero.

Proof. Immediate consequence of Lemma 15.100.2 and the fact that $I^ mN = 0$ for some $m > 0$. $\square$

Lemma 15.100.4. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $K \in D(A)$ be pseudo-coherent and let $M$ be a finite $A$-module. For each $p \in \mathbf{Z}$ there exists an $c$ such that the image of $\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, I^ nM) \to \mathop{\mathrm{Ext}}\nolimits _ A^ p(K, M)$ is contained in $I^{n - c}\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, M)$ for $n \geq c$.

Proof. Choose a bounded above complex $P^\bullet $ of finite free $A$-modules representing $K$. Then $\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, M)$ is the cohomology of

\[ \mathop{\mathrm{Hom}}\nolimits _ A(F^{-p + 1}, M) \xrightarrow {a} \mathop{\mathrm{Hom}}\nolimits _ A(F^{-p}, M) \xrightarrow {b} \mathop{\mathrm{Hom}}\nolimits _ A(F^{-p - 1}, M) \]

and $\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, I^ nM)$ is computed by replacing these finite $A$-modules by $I^ n$ times themselves. Thus the result by Lemma 15.100.1 (and much more is true). $\square$

In Situation 15.90.15 we define complexes $I_ n^\bullet $ such that we have distinguished triangles

\[ I_ n^\bullet \to A \to K_ n^\bullet \to I_ n^\bullet [1] \]

in the triangulated category $K(A)$ of complexes of $A$-modules up to homotopy. Namely, we set $I_ n^\bullet = \sigma _{\leq -1}K_ n^\bullet [-1]$. We have termwise split short exact sequences of complexes

\[ 0 \to A \to K_ n^\bullet \to I_ n^\bullet [1] \to 0 \]

defining distinguished triangles by definition of the triangulated structure on $K(A)$. Their rotations determine the desired distinguished triangles above. Note that $I_ n^0 = A^{\oplus r} \to A$ is given by multiplication by $f_ i^ n$ on the $i$th factor. Hence $I_ n^\bullet \to A$ factors as

\[ I_ n^\bullet \to (f_1^ n, \ldots , f_ r^ n) \to A \]

In fact, there is a short exact sequence

\[ 0 \to H^{-1}(K_ n^\bullet ) \to H^0(I_ n^\bullet ) \to (f_1^ n, \ldots , f_ r^ n) \to 0 \]

and for every $i < 0$ we have $H^ i(I_ n^\bullet ) = H^{i - 1}(K_ n^\bullet $. The maps $K_{n + 1}^\bullet \to K_ n^\bullet $ induce maps $I_{n + 1}^\bullet \to I_ n^\bullet $ and we obtain a commutative diagram

\[ \xymatrix{ \ldots \ar[r] & I_3^\bullet \ar[d] \ar[r] & I_2^\bullet \ar[d] \ar[r] & I_1^\bullet \ar[d] \\ \ldots \ar[r] & (f_1^3, \ldots , f_ r^3) \ar[r] & (f_1^2, \ldots , f_ r^2) \ar[r] & (f_1, \ldots , f_ r) } \]

in $K(A)$.

Lemma 15.100.5. In Situation 15.90.15 assume $A$ is Noetherian. With notation as above, the inverse system $(I^ n)$ is pro-isomorphic in $D(A)$ to the inverse system $(I_ n^\bullet )$.

Proof. It is elementary to show that the inverse system $I^ n$ is pro-isomorphic to the inverse system $(f_1^ n, \ldots , f_ r^ n)$ in the category of $A$-modules. Consider the inverse system of distinguished triangles

\[ I_ n^\bullet \to (f_1^ n, \ldots , f_ r^ n) \to C_ n^\bullet \to I_ n^\bullet [1] \]

where $C_ n^\bullet $ is the cone of the first arrow. By Derived Categories, Lemma 13.41.4 it suffices to show that the inverse system $C_ n^\bullet $ is pro-zero. The complex $I_ n^\bullet $ has nonzero terms only in degrees $i$ with $-r + 1 \leq i \leq 0$ hence $C_ n^\bullet $ is bounded similarly. Thus by Derived Categories, Lemma 13.41.3 it suffices to show that $H^ p(C_ n^\bullet )$ is pro-zero. By the discussion above we have $H^ p(C_ n^\bullet ) = H^ p(K_ n^\bullet )$ for $p \leq -1$ and $H^ p(C_ n^\bullet ) = 0$ for $p \geq 0$. The fact that the inverse systems $H^ p(K_ n^\bullet )$ are pro-zero was shown in the proof of Lemma 15.93.1 (and this is where the assumption that $A$ is Noetherian is used). $\square$

Lemma 15.100.6. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M^\bullet $ be a bounded complex of finite $A$-modules. The inverse system of maps

\[ I^ n \otimes _ A^\mathbf {L} M^\bullet \longrightarrow I^ nM^\bullet \]

defines an isomorphism of pro-objects of $D(A)$.

Proof. Choose generators $f_1, \ldots , f_ r \in I$ of $I$. The inverse system $I^ n$ is pro-isomorphic to the inverse system $(f_1^ n, \ldots , f_ r^ n)$ in the category of $A$-modules. With notation as in Lemma 15.100.5 we find that it suffices to prove the inverse system of maps

\[ I_ n^\bullet \otimes _ A^\mathbf {L} M^\bullet \longrightarrow (f_1^ n, \ldots , f_ r^ n)M^\bullet \]

defines an isomorphism of pro-objects of $D(A)$. Say we have $a \leq b$ such that $M^ i = 0$ if $i \not\in [a, b]$. Then source and target of the arrows above have cohomology only in degrees $[-r + a, b]$. Thus it suffices to show that for any $p \in \mathbf{Z}$ the inverse system of maps

\[ H^ p(I_ n^\bullet \otimes _ A^\mathbf {L} M^\bullet ) \longrightarrow H^ p((f_1^ n, \ldots , f_ r^ n)M^\bullet ) \]

defines an isomorphism of pro-objects of $A$-modules, see Derived Categories, Lemma 13.41.5. Using the pro-isomorphism between $I_ n^\bullet \otimes _ A^\mathbf {L} M^\bullet $ and $I^ n \otimes _ A^\mathbf {L} M^\bullet $ and the pro-isomorphism between $(f_1^ n, \ldots , f_ r^ n)M^\bullet $ and $I^ nM^\bullet $ this is equivalent to showing that the inverse system of maps

\[ H^ p(I^ n \otimes _ A^\mathbf {L} M^\bullet ) \longrightarrow H^ p(I^ nM^\bullet ) \]

defines an isomorphism of pro-objects of $A$-modules Choose a bounded above complex of finite free $A$-modules $P^\bullet $ and a quasi-isomorphism $P^\bullet \to M^\bullet $. Then it suffices to show that the inverse system of maps

\[ H^ p(I^ nP^\bullet ) \longrightarrow H^ p(I^ nM^\bullet ) \]

is a pro-isomorphism. This follows from Lemma 15.100.1 as $H^ p(P^\bullet ) = H^ p(M^\bullet )$. $\square$

Lemma 15.100.7. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module. There exists an integer $n > 0$ such that $I^ nM \to M$ factors through the map $I \otimes _ A^\mathbf {L} M \to M$ in $D(A)$.

Proof. This follows from Lemma 15.100.6. It can also been seen directly as follows. Consider the distinguished triangle

\[ I \otimes _ A^\mathbf {L} M \to M \to A/I \otimes _ A^\mathbf {L} M \to I \otimes _ A^\mathbf {L} M[1] \]

By the axioms of a triangulated category it suffices to prove that $I^ nM \to A/I \otimes _ A^\mathbf {L} M$ is zero in $D(A)$ for some $n$. Choose generators $f_1, \ldots , f_ r$ of $I$ and let $K = K_\bullet (A, f_1, \ldots , f_ r)$ be the Koszul complex and consider the factorization $A \to K \to A/I$ of the quotient map. Then we see that it suffices to show that $I^ nM \to K \otimes _ A M$ is zero in $D(A)$ for some $n > 0$. Suppose that we have found an $n > 0$ such that $I^ nM \to K \otimes _ A M$ factors through $\tau _{\geq t}(K \otimes _ A M)$ in $D(A)$. Then the obstruction to factoring through $\tau _{\geq t + 1}(K \otimes _ A M)$ is an element in $\mathop{\mathrm{Ext}}\nolimits ^ t(I^ nM, H_ t(K \otimes _ A M))$. The finite $A$-module $H_ t(K \otimes _ A M)$ is annihilated by $I$. Then by Lemma 15.100.3 we can after increasing $n$ assume this obstruction element is zero. Repeating this a finite number of times we find $n$ such that $I^ nM \to K \otimes _ A M$ factors through $0 = \tau _{\geq r + 1}(K \otimes _ A M)$ in $D(A)$ and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G3J. Beware of the difference between the letter 'O' and the digit '0'.