The Stacks project

Lemma 15.101.4. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $K \in D(A)$ be pseudo-coherent and let $M$ be a finite $A$-module. For each $p \in \mathbf{Z}$ there exists an $c$ such that the image of $\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, I^ nM) \to \mathop{\mathrm{Ext}}\nolimits _ A^ p(K, M)$ is contained in $I^{n - c}\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, M)$ for $n \geq c$.

Proof. Choose a bounded above complex $P^\bullet $ of finite free $A$-modules representing $K$. Then $\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, M)$ is the cohomology of

\[ \mathop{\mathrm{Hom}}\nolimits _ A(F^{-p + 1}, M) \xrightarrow {a} \mathop{\mathrm{Hom}}\nolimits _ A(F^{-p}, M) \xrightarrow {b} \mathop{\mathrm{Hom}}\nolimits _ A(F^{-p - 1}, M) \]

and $\mathop{\mathrm{Ext}}\nolimits _ A^ p(K, I^ nM)$ is computed by replacing these finite $A$-modules by $I^ n$ times themselves. Thus the result by Lemma 15.101.1 (and much more is true). $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DYI. Beware of the difference between the letter 'O' and the digit '0'.