The Stacks project

Lemma 15.91.4. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Let $M$ be a finite $A$-module. There exists an integer $n > 0$ such that $I^ nM \to M$ factors through the map $I \otimes _ A^\mathbf {L} M \to M$ in $D(A)$.

Proof. Consider the distinguished triangle

\[ I \otimes _ A^\mathbf {L} M \to M \to A/I \otimes _ A^\mathbf {L} M \to I \otimes _ A^\mathbf {L} M[1] \]

By the axioms of a triangulated category it suffices to prove that $I^ nM \to A/I \otimes _ A^\mathbf {L} M$ is zero in $D(A)$ for some $n$. Choose generators $f_1, \ldots , f_ r$ of $I$ and let $K = K_\bullet (A, f_1, \ldots , f_ r)$ be the Koszul complex and consider the factorization $A \to K \to A/I$ of the quotient map. Then we see that it suffices to show that $I^ nM \to K \otimes _ A M$ is zero in $D(A)$ for some $n > 0$. Suppose that we have found an $n > 0$ such that $I^ nM \to K \otimes _ A M$ factors through $\tau _{\geq t}(K \otimes _ A M)$ in $D(A)$. Then the obstruction to factoring through $\tau _{\geq t + 1}(K \otimes _ A M)$ is an element in $\mathop{\mathrm{Ext}}\nolimits ^ t(I^ nM, H_ t(K \otimes _ A M))$. The finite $A$-module $H_ t(K \otimes _ A M)$ is annihilated by $I$. Then by Lemma 15.91.1 we can after increasing $n$ assume this obstruction element is zero. Repeating this a finite number of times we find $n$ such that $I^ nM \to K \otimes _ A M$ factors through $0 = \tau _{\geq r + 1}(K \otimes _ A M)$ in $D(A)$ and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0928. Beware of the difference between the letter 'O' and the digit '0'.