Lemma 52.2.2. Let $I$ be an ideal of a ring $A$. Let $X$ be a scheme over $\mathop{\mathrm{Spec}}(A)$. Let

be an inverse system of $\mathcal{O}_ X$-modules such that $\mathcal{F}_ n = \mathcal{F}_{n + 1}/I^ n\mathcal{F}_{n + 1}$. Given $n$ define

If $\bigoplus H^1_ n$ satisfies the ascending chain condition as a graded $\bigoplus _{n \geq 0} I^ n/I^{n + 1}$-module, then the inverse system $M_ n = \Gamma (X, \mathcal{F}_ n)$ satisfies the Mittag-Leffler condition.

## Comments (0)