Lemma 115.8.3. Let $I$ be a finitely generated ideal of a ring $A$. Let $X$ be a scheme over $\mathop{\mathrm{Spec}}(A)$. Let
be an inverse system of $\mathcal{O}_ X$-modules such that $\mathcal{F}_ n = \mathcal{F}_{n + 1}/I^ n\mathcal{F}_{n + 1}$. Assume
satisfies the ascending chain condition as a graded $\bigoplus _{n \geq 0} I^ n/I^{n + 1}$-module. Then the limit topology on $M = \mathop{\mathrm{lim}}\nolimits \Gamma (X, \mathcal{F}_ n)$ is the $I$-adic topology.
Comments (0)