Proposition 51.14.2. Let $A$ be a Noetherian ring which has a dualizing complex. Let $T \subset \mathop{\mathrm{Spec}}(A)$ be a subset stable under specialization. Let $s \in \mathbf{Z}$. Let $K \in D_{\textit{Coh}}^+(A)$. The following are equivalent
$H^ i_ T(K)$ is a finite $A$-module for $i \leq s$, and
for all $\mathfrak p \not\in T$, $\mathfrak q \in T$ with $\mathfrak p \subset \mathfrak q$ we have
\[ \text{depth}_{A_\mathfrak p}(K_\mathfrak p) + \dim ((A/\mathfrak p)_\mathfrak q) > s \]
Comments (0)