Lemma 58.20.5. In Situation 58.19.1. Let $V$ be finite étale over $U$. Assume

1. $A$ has a dualizing complex,

2. the pair $(A, (f))$ is henselian,

3. one of the following is true

1. $A_ f$ is $(S_2)$ and every irreducible component of $X$ not contained in $X_0$ has dimension $\geq 3$, or

2. for every prime $\mathfrak p \subset A$, $f \not\in \mathfrak p$ we have $\text{depth}(A_\mathfrak p) + \dim (A/\mathfrak p) > 2$.

4. $V_0 = V \times _ U U_0$ is equal to $Y_0 \times _{X_0} U_0$ for some $Y_0 \to X_0$ finite étale.

Then $V = Y \times _ X U$ for some $Y \to X$ finite étale.

Proof. We reduce to the complete case using Lemma 58.20.4. (The assumptions carry over; see proof of Lemma 58.19.5.)

In the complete case we can lift $Y_0 \to X_0$ to a finite étale morphism $Y \to X$ by More on Algebra, Lemma 15.13.2; observe that $(A, fA)$ is a henselian pair by More on Algebra, Lemma 15.11.4. Then we can use Lemma 58.19.5 to see that $V$ is isomorphic to $Y \times _ X U$ and the proof is complete. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).