58.23 Finite étale covers of punctured spectra, III
In this section we study when in Situation 58.19.1. the restriction functor
\[ \mathop{\mathrm{colim}}\nolimits _{U_0 \subset U' \subset U\text{ open}} \textit{FÉt}_{U'} \longrightarrow \textit{FÉt}_{U_0} \]
is an equivalence of categories.
Lemma 58.23.1. In Situation 58.19.1 assume
$A$ has a dualizing complex and is $f$-adically complete,
one of the following is true
$A_ f$ is $(S_2)$ and every irreducible component of $X$ not contained in $X_0$ has dimension $\geq 4$, or
if $\mathfrak p \not\in V(f)$ and $V(\mathfrak p) \cap V(f) \not= \{ \mathfrak m\} $, then $\text{depth}(A_\mathfrak p) + \dim (A/\mathfrak p) > 3$.
Then the restriction functor
\[ \mathop{\mathrm{colim}}\nolimits _{U_0 \subset U' \subset U\text{ open}} \textit{FÉt}_{U'} \longrightarrow \textit{FÉt}_{U_0} \]
is an equivalence.
Proof.
This follows from Lemma 58.17.4 and Algebraic and Formal Geometry, Lemma 52.24.1.
$\square$
Lemma 58.23.2. In Situation 58.19.1 assume
$A$ is $f$-adically complete,
$f$ is a nonzerodivisor,
$H^1_\mathfrak m(A/fA)$ and $H^2_\mathfrak m(A/fA)$ are finite $A$-modules.
Then the restriction functor
\[ \mathop{\mathrm{colim}}\nolimits _{U_0 \subset U' \subset U\text{ open}} \textit{FÉt}_{U'} \longrightarrow \textit{FÉt}_{U_0} \]
is an equivalence.
Proof.
This follows from Lemma 58.17.4 and Algebraic and Formal Geometry, Lemma 52.24.2.
$\square$
Comments (0)