Lemma 52.15.1. Let X be a Noetherian scheme and let Y \subset X be a closed subscheme. Let Y_ n \subset X be the nth infinitesimal neighbourhood of Y in X. Consider the following conditions
X is quasi-affine and \Gamma (X, \mathcal{O}_ X) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{O}_{Y_ n}) is an isomorphism,
X has an ample invertible module \mathcal{L} and \Gamma (X, \mathcal{L}^{\otimes m}) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{L}^{\otimes m}|_{Y_ n}) is an isomorphism for all m \gg 0,
for every finite locally free \mathcal{O}_ X-module \mathcal{E} the map \Gamma (X, \mathcal{E}) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{E}|_{Y_ n}) is an isomorphism, and
the completion functor \textit{Coh}(\mathcal{O}_ X) \to \textit{Coh}(X, \mathcal{I}) is fully faithful on the full subcategory of finite locally free objects.
Then (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) and (4) \Rightarrow (3).
Proof.
Proof of (3) \Rightarrow (4). If \mathcal{F} and \mathcal{G} are finite locally free on X, then considering \mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{F}) and using Cohomology of Schemes, Lemma 30.23.5 we see that (3) implies (4).
Proof of (2) \rightarrow (3). Namely, let \mathcal{L} be ample on X and suppose that \mathcal{E} is a finite locally free \mathcal{O}_ X-module. We claim we can find a universally exact sequence
0 \to \mathcal{E} \to (\mathcal{L}^{\otimes p})^{\oplus r} \to (\mathcal{L}^{\otimes q})^{\oplus s}
for some r, s \geq 0 and 0 \ll p \ll q. If this holds, then using the exact sequence
0 \to \mathop{\mathrm{lim}}\nolimits \Gamma (\mathcal{E}|_{Y_ n}) \to \mathop{\mathrm{lim}}\nolimits \Gamma ((\mathcal{L}^{\otimes p})^{\oplus r}|_{Y_ n}) \to \mathop{\mathrm{lim}}\nolimits \Gamma ((\mathcal{L}^{\otimes q})^{\oplus s}|_{Y_ n})
and the isomorphisms in (2) we get the isomorphism in (3). To prove the claim, consider the dual locally free module \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{O}_ X) and apply Properties, Proposition 28.26.13 to find a surjection
(\mathcal{L}^{\otimes -p})^{\oplus r} \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{O}_ X)
Taking duals we obtain the first map in the exact sequence (it is universally injective because being a surjection is universal). Repeat with the cokernel to get the second. Some details omitted.
Proof of (1) \Rightarrow (2). This is true because if X is quasi-affine then \mathcal{O}_ X is an ample invertible module, see Properties, Lemma 28.27.1.
We omit the proof of (4) \Rightarrow (3).
\square
Comments (0)