The Stacks project

Lemma 52.15.1. Let $X$ be a Noetherian scheme and let $Y \subset X$ be a closed subscheme. Let $Y_ n \subset X$ be the $n$th infinitesimal neighbourhood of $Y$ in $X$. Consider the following conditions

  1. $X$ is quasi-affine and $\Gamma (X, \mathcal{O}_ X) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{O}_{Y_ n})$ is an isomorphism,

  2. $X$ has an ample invertible module $\mathcal{L}$ and $\Gamma (X, \mathcal{L}^{\otimes m}) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{L}^{\otimes m}|_{Y_ n})$ is an isomorphism for all $m \gg 0$,

  3. for every finite locally free $\mathcal{O}_ X$-module $\mathcal{E}$ the map $\Gamma (X, \mathcal{E}) \to \mathop{\mathrm{lim}}\nolimits \Gamma (Y_ n, \mathcal{E}|_{Y_ n})$ is an isomorphism, and

  4. the completion functor $\textit{Coh}(\mathcal{O}_ X) \to \textit{Coh}(X, \mathcal{I})$ is fully faithful on the full subcategory of finite locally free objects.

Then (1) $\Rightarrow $ (2) $\Rightarrow $ (3) $\Rightarrow $ (4) and (4) $\Rightarrow $ (3).

Proof. Proof of (3) $\Rightarrow $ (4). If $\mathcal{F}$ and $\mathcal{G}$ are finite locally free on $X$, then considering $\mathcal{H} = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{G}, \mathcal{F})$ and using Cohomology of Schemes, Lemma 30.23.5 we see that (3) implies (4).

Proof of (2) $\rightarrow $ (3). Namely, let $\mathcal{L}$ be ample on $X$ and suppose that $\mathcal{E}$ is a finite locally free $\mathcal{O}_ X$-module. We claim we can find a universally exact sequence

\[ 0 \to \mathcal{E} \to (\mathcal{L}^{\otimes p})^{\oplus r} \to (\mathcal{L}^{\otimes q})^{\oplus s} \]

for some $r, s \geq 0$ and $0 \ll p \ll q$. If this holds, then using the exact sequence

\[ 0 \to \mathop{\mathrm{lim}}\nolimits \Gamma (\mathcal{E}|_{Y_ n}) \to \mathop{\mathrm{lim}}\nolimits \Gamma ((\mathcal{L}^{\otimes p})^{\oplus r}|_{Y_ n}) \to \mathop{\mathrm{lim}}\nolimits \Gamma ((\mathcal{L}^{\otimes q})^{\oplus s}|_{Y_ n}) \]

and the isomorphisms in (2) we get the isomorphism in (3). To prove the claim, consider the dual locally free module $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{O}_ X)$ and apply Properties, Proposition 28.26.13 to find a surjection

\[ (\mathcal{L}^{\otimes -p})^{\oplus r} \longrightarrow \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{O}_ X) \]

Taking duals we obtain the first map in the exact sequence (it is universally injective because being a surjection is universal). Repeat with the cokernel to get the second. Some details omitted.

Proof of (1) $\Rightarrow $ (2). This is true because if $X$ is quasi-affine then $\mathcal{O}_ X$ is an ample invertible module, see Properties, Lemma 28.27.1.

We omit the proof of (4) $\Rightarrow $ (3). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EKP. Beware of the difference between the letter 'O' and the digit '0'.