Lemma 52.15.7. Let $A$ be a Noetherian ring. Let $f \in \mathfrak a$ be an element of an ideal of $A$. Let $U = \mathop{\mathrm{Spec}}(A) \setminus V(\mathfrak a)$. Assume

$A$ has a dualizing complex and is complete with respect to $f$,

for every prime $\mathfrak p \subset A$, $f \not\in \mathfrak p$ and $\mathfrak q \in V(\mathfrak p) \cap V(\mathfrak a)$ we have $\text{depth}(A_\mathfrak p) + \dim ((A/\mathfrak p)_\mathfrak q) > 2$.

Then the completion functor

is fully faithful on the full subcategory of finite locally free objects.

## Comments (0)