Lemma 52.15.6. Let $A$ be a Noetherian ring. Let $f \in \mathfrak a$ be an element of an ideal of $A$. Let $U = \mathop{\mathrm{Spec}}(A) \setminus V(\mathfrak a)$. Assume

1. $A$ has a dualizing complex and is complete with respect to $f$,

2. for every prime $\mathfrak p \subset A$, $f \not\in \mathfrak p$ and $\mathfrak q \in V(\mathfrak p) \cap V(\mathfrak a)$ we have $\text{depth}(A_\mathfrak p) + \dim ((A/\mathfrak p)_\mathfrak q) > 2$.

Then the completion functor

$\textit{Coh}(\mathcal{O}_ U) \longrightarrow \textit{Coh}(U, I\mathcal{O}_ U), \quad \mathcal{F} \longmapsto \mathcal{F}^\wedge$

is fully faithful on the full subcategory of finite locally free objects.

Proof. Follows from Lemma 52.15.5 and Local Cohomology, Proposition 51.10.1. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EKT. Beware of the difference between the letter 'O' and the digit '0'.