The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 49.15.6. Let $A$ be a Noetherian ring. Let $f \in \mathfrak a \subset A$ be an element of an ideal of $A$. Let $U = \mathop{\mathrm{Spec}}(A) \setminus V(\mathfrak a)$. Assume

  1. $A$ is $f$-adically complete,

  2. $H^1_\mathfrak a(A)$ and $H^2_\mathfrak a(A)$ are annihilated by a power of $f$.

Then the completion functor

\[ \textit{Coh}(\mathcal{O}_ U) \longrightarrow \textit{Coh}(U, I\mathcal{O}_ U), \quad \mathcal{F} \longmapsto \mathcal{F}^\wedge \]

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 49.15.1 it suffices to show that

\[ \Gamma (U, \mathcal{O}_ U) = \mathop{\mathrm{lim}}\nolimits \Gamma (U, \mathcal{O}_ U/I^ n\mathcal{O}_ U) \]

This follows immediately from Lemma 49.12.6. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EKS. Beware of the difference between the letter 'O' and the digit '0'.