Definition 72.6.4. Let $S$ be a scheme. Let $X$ be a locally Noetherian integral algebraic space over $S$. Let $f \in R(X)^*$. For every prime divisor $Z \subset X$ we define the order of vanishing of $f$ along $Z$ as the integer
where $a, b \in \mathcal{O}_{X, \xi }^ h$ are nonzerodivisors such that the image of $f$ in $Q(\mathcal{O}_{X, \xi }^ h)$ (Lemma 72.6.3) is equal to $a/b$. This is well defined by Algebra, Lemma 10.121.1.
Comments (0)